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Abstract – Search methods in dynamic networks usually cannot 

rely on stable topology from which shortest or otherwise optimized 

paths through the network are derived. When no reliable search 

indices or routing tables are provided, other methods like flooding 

or random walks have to be considered to explore the network. 

These approaches can exploit partially available information on 

network paths, but the search effort naturally increases with the 

lack of precise paths due to network dynamics. This problem is 

especially relevant for wireless technology with strict limitation on 

power consumption. 

We compare the efficiency of random walks and flooding for 

exploring networks of small to medium size. Several scenarios are 

considered including partial path information support for search. 

Transient analysis and a bound is applied in order to evaluate the 

messaging overhead.   

 

 

I.  INTRODUCTION 

Exploration and search methods are generally required to enable 

services and content retrieval in communication networks. Even 

in fixed network areas of the Internet where the topology is 

stable enough to establish standard routing protocols and search 

engines to locate nodes and information on them, they have to 

cope with a steadily ongoing changes. But more dynamic 

network structures are often encountered on large scale, e.g. 

peer-to-peer (P2P) overlays [6][14] as well as in wireless sensor 

or mobile ad hoc networks (MANETs) on smaller scale. 

A search may refer to users, network nodes, information, 

content or services of any kind residing on network resources 

based on identifiers like IP addresses or hash values used in P2P 

networks. Although a single node is often addressed by a 

search, this can be extended to a set of nodes denoted as the 

target node set, each of which is able to respond successfully. 

Other cases, where several nodes have to be involved to get a 

result in a production chain or a distributed scheme, are not 

considered here. 

Regarding search methods in unstructured networks, random 

walks approved to be a promising alternative in general and 

especially in large scale networks [1][4][4][5][7][11][14][16], 

where the standard method by flooding may be prohibitive, 

even with a limited hop count as in the first version of the 

Gnutella P2P network [13]. 

In this study we focus on dynamic networks with a planar graph 

structure as for sensor and mobile networks, where basic 

random walks are often less efficient than flooding. Several 

alternatives for routing and search methods are discussed in 

recent work in this area [3][10][15]. Poor performance of 

routing protocols in MANETs in general and in highly dynamic 

environments in particular is shown by [8][12]. Collecting state 

information to improve routing protocol performance in 

particular for QoS routing, also leads to a highly inaccurate 

view of the network state [9]. However, it is demonstrated [2] 

that random walks essentially benefit even from imprecise and 

only partially valid information in support of a search or when 

many nodes in the network are able to respond.  

Within the limited space of an extended abstract we focus on 

the basic case of a planar grid. The analysis method is 

summarized in section II and evaluation in sections III confirm 

the promising performance of biased random walk shown in 

examples in [2] from a more general view. In section IV, a 

lower bound on the performance is obtained by focusing on the 

distance to the target leading to a linear chain approach. The 

result gives a clear insight in the performance tradeoff between 

biased random walk and flooding. 

 
 

II.  ANALYSIS OF THE EFFICIENCY OF 

RANDOM WALKS AND FLOODING  
The structure of considered communication networks is denoted 

by a graph G = (V, E) with sets V of nodes and E of edges. The 

degree d(a) of a node a ∈V is the number of edges attached to 

the node  d(a) = |{k | k ∈V, (a, k) ∈ E}|.  The minimum node 

degree is dmin = min{d(a) | a∈V}.  

With regard to 2-dimensional grid networks each node (x, y) ∈V 

is connected to its 4 neighbors (x–1, y), (x+1, y), (x, y–1) and   

(x, y+1) except for missing neighbors beyond the boundaries for 

x = 0, x = N, y = 0, and y = M. 

We follow a random walk through the network as a stepwise 

process, which proceeds from a node to a neighbor at the next 

hop. A random walk R of length L is denoted by the series        

R = (r0, r1, r2 ,…, rL) of visited nodes, where an edge (rk–1, rk) ∈ 

E is chosen for the k-th hop (1 ≤ k ≤ L). Usually a random walk 

chooses its next hop with the same probability among d(a) 

options 

∀ a, k;  (a, k) ∈E:   pak = Pr(rn + 1 = k | rn = a) = 1 / d(a).   (1) 

The corresponding transition matrix P = (pak) determines a 

random walk in the network as a Markov process, where 

network nodes correspond to the states of the underlying 

Markov chain and edges to transitions from a state to another. 
 

II.A  Transient analysis of random walks 

When the exploration of a network by random walks of 

predefined length is evaluated using simulation [5][11][15], the 

results are subject to confidence levels with long simulation 

runs being required to achieve tight confidence intervals. 

General analytical bounds for the convergence are valuable to 

ensure the principle behaviour, but often are not tight [4]. We 



follow an alternative classical approach using transient analysis 

[2][7], which stepwise determines the probabilities pm
(R)

(a)  of a 

random walk to enter a network node a at its m-th hop. When 

the random walk starts at a specific node s, then we have  

p0
(R)

(s) = 1   and   ∀a ≠ s:  p0
(R)

(a) = 0 

as the initial distribution. In general, any arbitrary initial 

distribution can be considered. The transient analysis iteratively 

computes the distribution of the next hop location. From 

knowledge of pm
(R)

(a) the distribution pm+1
(R)

(a) for the next step 

is computed by 

pm+1
(R)

(a) = Σk: (k, a)∈E  pm
(R)

(k) pka                  (2) 

 

For the purpose of network search performance, the probability 

qm
(R)

(t) that a node t has been reached during a random walk of 

length m is the most important measure: 

qm
(R)( t) = Pr(∃ j; 0 ≤ j ≤ m: rj = t). 

The probabilities qm
(R)

(t) are computed by the same transient 

step-by-step approach. The only modification required is to 

introduce an absorbing state at node t, which accumulates the 

probabilities for visiting that node during the walk. Therefore 

the transition equations (1) need to be changed only for 

departures from node t: 

          ∀ a, k; (a, k) ∈ E:  qak  =  1/d(a)   if a ≠ t;                           

  ∀ k; (t, k) ∈ E:  qtk   =  0  if  k ≠ t;        qtt  =  1.              (3) 

qm
(R)

( t) is determined by applying equation (2) to the modified 

transition matrix: 

qm+1
(R)

(a) = Σk: (k, a)∈E  qm
(R)

(k) qka .                 (4) 

The random walk defined by equations (3) and (4) has 

unchanged behaviour at all nodes except for t. Once it has 

reached t it stays there for ever. Consequently, qm
(R)

(t) is 

monotonously increasing with m. Provided that the graph is 

irreducible and finite, node t will be reached sooner or later with 

probability 1 even in periodical cases:  

qm
(R)

(t) ≤ qm+1
(R)

(t);    limm→∞  qm
(R)

(t) = 1. 

The computational complexity for the transient analysis due to 

equations (2-4) is proportional to the number |E| of edges in the 

network for each hop. Therefore the effort to compute pm
(R)

(a) is 

of the order O(m|E|), which makes transient analysis applicable 

to large scale networks with millions of nodes. 

 

II.B  Multiple random walks in parallel 
Random walks often can reduce the communication overhead, 

but they traverse the hops sequentially and thus usually spend 

much more time than flooding. Multiple random walks in 

parallel may be applied as a compromise between demands for 

low delay and overhead. If a random walk is assured to have a 

success rate of  σ < 1 within k steps, then m random walks of 

the same type in parallel each with k steps reduce the failure 

rate from 1 – σ to (1 – σ)
k
. Thus a success rate of σ = 90% is 

improving up to 99.999% by using m = 5 walks in parallel. A 

single walk most often achieves this success rate with less than 

mk steps but with a longer run time. 

 

II.C  Flooding   
In the simplest case, flooding will spread a request from a node 

to all its neighbors which repeat to contribute into an exhaustive 

flood covering the entire network. When the same request is 

received several times at a node from different neighbors, then 

only the first receipt is forwarded and  later ones are discarded. 

With broadcasting in wireless networks, the number of flooding 

messages sent is equal to the number of traversed nodes, 

whereas a node has to send multiple messages for flooding over 

point-to-point connections and in peer-to-peer networks. The 

fact that at most one message is sufficient per node, makes 

flooding more competitive in broadcast environments. 

In order to reduce the messaging overhead, flooding is usually 

done only up to a predefined hop limit h [13]. An appropriate 

value of h may be derived from knowledge of the network 

structure and a demand for coverage. Without that knowledge, h 

may be initialized with a small value and stepwise increased if 

the previous search radius turned out to be insufficient. In a 2-

dimensional grid there are a maximum of 2h
2
 + 2h + 1 nodes 

within a distance of ≤ h hops, if the surrounding of the node is 

not further restricted by the grid boundary. 

When some network nodes have partial information about 

which of their neighbors are in downstream direction to the 

target, then the forwarding can be restricted to those nodes, 

which reduces the messaging overhead accordingly. 

 
 

III.   EVALUATIONS 
In order to study the tradeoffs in the performance of flooding 

and random walks we consider large 2-dimensional grids. The 

transient analysis approach can easily cope with a size of 

several hundred in both dimensions. The results are valid for 

infinite planar grids in the sense that we extend the size until we 

are sure that the grid boundary has no impact. The start and 

target node are located in the middle. Note that this is expected 

to be a worst case scenario in which any finite random walk 

without bias would miss a single target node with considerable 

probability. 

The search for a single target node is carried out by a biased 

random walk [2] utilizing partial routing information available 

in the network. This model simply assumes that a node is able 

to forward an incoming search request with probability 0 <ρ < 1 

into the direction downstream to the target. With probability     

1 – ρ  the node fails or has no valid information in support of 

the search due to dynamics, e.g. mobility or churn of nodes in 

the network.  

Assuming that the random walk is currently at a node (a, b) 

with distance ∆ = |a – x| + |b – y|  to the target (x, y), we have to 

distinguish whether (a, b) is in line with the target, such that      

a = x or b = y, or not. If they are in line, then a unique of the 4 

neighbors of (a, b) is closer to the target while three other 

neighbors have distance ∆+1. The biased random walk chooses 

each of those three with probability (1–ρ)/4 and the closer one 

with probability (1 + 3ρ)/4. Otherwise, if they are not in line 

then there are two neighbors at distance ∆–1 and two at ∆+1. 

Both closer neighbors are then chosen with probability (1+ρ)/4 

each and both farer ones with (1–ρ)/4, respectively. 



The model surely does not cover all realistic scenarios, since it 

is left open how a node decides if it has enough and up to date 

information to direct to the next step to the target. In addition, a 

homogeneous information distribution is implied, whereas 

networks structures are often inhomogeneous e.g. hierarchical 

and more precise information can be assumed near the target. 
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Figure 1: Overhead of biased random walk search for 90% success 

 

Figure 1 shows how many steps are required for a biased 

random walk to reach the target at hop distances of 1, 2, … 20 

with 90% probability. Start and target node are assumed to be 

located on a common line in the grid. The 3 lower curves for    

ρ = 50%, 70% and 90% routing information availability show 

that random walks are efficient as compared to flooding, which 

is included by the quadratic curve 2∆
2
 – 2∆ + 1 for the number 

of nodes within  distance ∆ – 1. This does not reflect the fact 

that flooding could also benefit from partial routing 

information, but on the other hand has to try with different hop 

count limits since the distance ∆ is not known a priory. 
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Figure 2: Effort of random walk with target reached over grid diagonal 
 

While the analysis in figure 1 is for targets that can be reached 

over a line of the grid, we next consider the opposite cases of  

targets to be reached over a diagonal in the grid. Figure 2 shows 

the corresponding results for hop distances up to 20 and the 

same parameters, revealing an even better performance of the 

random walks. The improvement is plausible from the fact, that 

if the current node and the target are on a line, then the distance 

to the target is reducing for one of four next hops and increasing 

for the three others. Otherwise, if the target is not in line with 

the current node, then two of its four neighbors are closer to the 

target which enables a faster convergence in such steps.     
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Figure 3: Overhead of biased random walk search for 99% success 

 

Figure 3 gives the corresponding results for a success 

probability of 99% instead of 90% in figure 2. Note that two 

independent random walks in parallel can reach this success 

level at twice the number of steps in total. For small distances, a 

single random walk often needs more than twice the effort, 

which makes multiple walks preferable. For larger distances, a 

single walk reaches 99% success essentially below twice the 

number of hops required for 90%.    
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Figure 4: Applying the bound of section 4 to the examples of figure 2 

 

 

 



IV. A BOUND ON THE BIASED RANDOM 

WALK PERFORMANCE 
Assuming that a biased random walk decrements the distance ∆ 

to the target in each step with probability q or increments the 

distance with probability p < q or stays at the same distance 

with probability 1 – p – q, the process of approaching the target 

becomes a simple birth-death process as is well known e.g. for 

M/M/1 queueing systems. The reduction to a 1-dimensional 

view is appropriate, when no boundaries have to be regarded in 

a grid or other network structure. 
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Figure 5: Linear Markov chain approach for the distance to the target 

 

For the transient behaviour of this birth-and-death process we 

obtain: The number of hops until the next change in the distance 

∆ is geometrically distributed with parameter 1–p–q; for 2-di-

mensional grids the distance changes in each step, i.e. p + q = 1.  

Starting at a distance ∆ from the target, the distance ∆m after m 

in- or decrements has a binomial distribution: 

Pr{∆m = ∆ + m – 2k} =       ω
k(1 – ω)

m – k  for k = 0, …, m, where 

ω = q/(p+q). This includes states of negative distances, which 

are only reachable by previously traversing the distance 0. The 

complete probability mass on states below 0 indicates that the 

search was already successful, i.e. state 0 should be absorbing.  

But we continue the analysis of the non-truncated birth-death 

chain. The mean E(∆m) of ∆m is given by E(∆m) = ∆ – (2ω –1) m 

For E(∆m) ≤ 0, i.e. for m = ∆ / (2ω – 1) we conclude that the 

target has been reached at least with probability 50%, since a 

binomial distribution is symmetrical and has most of its 

probability mass in the negative part when the mean is negative. 

This gives a clear and simple hint on the number m of steps 

required for a successful biased random walk.   

For success probabilities 1–10–k we include the variance σ2(∆m) 

of the distribution in the analysis via Chebychev’s bound 

Pr{∆m > E(∆m) + 10k σ(∆m)} ≤ 10–2k. 

The mean E(∆m) = ∆ – (2ω –1)m and variance σ
2
(∆m) = ω(1– ω)m 

of the binomial distribution, leads to a bound on Pr{∆m > 0},  

from which we derive:  
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We apply the bound to random walks in a grid for the same 

cases as depicted in figure 2. In the grid, we obtain  

q = Pr{∆m+1 = ∆m – 1}  = (2+2ρ)/4  and 

p = 1– q = Pr{∆m+1 = ∆m + 1} = (2–2ρ)/4 

if the current node is not in a line with the target or otherwise    

q = (1+3ρ)/4; p = (3 – 3ρ)/4. We ignore the latter case for nodes 

in line with the target and adopt q = (2 + 2ρ)/4, p = (2 – 2ρ)/4. 

In this way, we get an approximation rather than a bound, 

which is valid for most of the traversed nodes except for those 

on both grid lines crossing at the target, Figure 4 compares the 

evaluations with the transient analyses of figure 2 to the 

derivation from the bound confirming a good overall match. 

CONCLUSIONS AND FURTHER WORK 
Using a basic planar grid model, we have shown that random 

walks can be efficient for search in dynamic networks, 

especially when partial routing information is still available. 

Transient analysis and a bound are utilized to analyze such 

biased random walks.  

Among further cases that had to be omitted in the extended 

abstract are networks with a larger node degree corresponding 

to a larger radius for reachability by a broadcast message as well 

as different network structures taken from application scenarios. 

Target sets consisting of multiple nodes are of interest to model 

different information levels about a target in its surrounding.  
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