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~ Abstract—We propose a model based on diffusion approx- a source to destination in a random multihop medium. In
imation to estimate the probability density function of the this model a value of the diffusion process represents the
distribution of a packet travel time in a multihop wireless  istance defined as the number of hops between the trandmitte

sensor network. In its general form, the model assumes that th ket d its destinati k). D i | i I
propagation medium and the distribution of relay nodes may be P@CKEL and Its destnation (sink). Due to complex topology

heterogeneous in space and that the system characteristics mayand transmission constraints, it is not sure that each ope-h
change over time. It consideres also the retransmission in casetransmission makes this distance shorter and the changes of

of a packet loss. distance may be considered as random process. This justifies
Keywords: diffusion approximation, transient analysis, wireless the use of diffusion process to characterise it. Diffusion
networks, sensor networks approximation is a classical method used in queueing theory

to represent a queue length or queueing time e.g. [3], in case

of general independent distributions of interrarival aadvice
Prediction of a packet travel time in wireless sensor neimes. Diffusion process is a continuous stochastic pbes

works is still an open issue. The sensor networks, see €.9. itlis used to approximate some discrete processes, seé§], |

consist of a large number of simple nodes scattered randomlys mentioned above — the number of customers in a queue;

over a certain area, having ability to route packets to theiere it represents the number of hops remaining to packet to

neighbours and finally to the sink which collects the data sethe destination.

to it via multihop transmission. If N(t) denotes the number of hops remaining to destina-
The topology of such networks is in most of cases uncertaion at time ¢, we construct a diffusion procesk(¢) such

and it changes in time (due to nodes movement or failureg)at its density functionf(z,¢; z) approximates probability

hence special routing algorithms were proposed, e.g. @], [distribution p(n,t;no) of the processN(t), N(0) = no:

to face this situation. As it is also hard to introduce globaf(n, t;ng) ~ p(n,t;ng). The density functionf (x, t; z)

addressing, the routing decision must be made without the

complete information about the network. We consider theesam f(z,¢;z0)dz = Plz < X (1) <z +dz | X(0) = xo]

network model as in [4] — a packet wireless network in which . T .

nodes are distributed over an area, but where we do not kn'c?wdmmed by the diffusion equation

about the presence, exact location, or reliability of nodém Of(z,t;xg)  a0%f(x,t;20) Of (z,t;20)

packets are forwarded to a node witch is most probably nearer ot — 9 912 —h O > (@

to the destination, but it is also possible that a transioissi

may actually move the packet further away from the sink

or send it to a node which is in the same distance to t@g

destination (see for example [8]). It may also happen that ﬁ

packet cannot be forwarded any further, that the intermedia

node has a failure, or that the packet is lost through noise or

some other transient effect. In that case, the packet may pe— iip, EIN(t+At) = N(t)]

I. INTRODUCTION

here the parameters and o define respectively the mean
d variance of infinitesimal changes of the diffusion pssce
maintain them similar to the considered procags), they
ould be chosen as

retransmitted after some time-out period has elapsedereith At=0 At ) )
by the source or from some intermediate storage location gn— 1y, LLUV(E+AY = N(1)"] = (EIN(t + At) = N(®)])
the path which it traversed before it was lost. At=0 At

In general, the parameters may depend on time and on the
current value of the procesg, = f(z,t) anda = «a(z,t),

Recently Gelenbe [4] proposed a model based on diffusias the propagation medium and distribution of relay nodes
approximation to estimate the mean transmission time fromay be heterogeneous in space and the system characgeristic

Il. M ODEL FORMULATION
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) ) ) o ) . Fig. 2. Distribution of first passage time fromy to 0, vz,,0(t), zo = 20,
Fig. 1. Density functionp(x, t; zo) of the diffusion process with absorbing 3 — 0.5 o = 0.05,0.1,0.5, 1.0.
barrier,zg = 20, « = 0.1, 8 = —0.5.

may change over time. We include this case in the proposed
approach.

Gelenbe in [4] constructs an ergodic process going repet-
itively from starting point to zero and considers its steady
state properties. Here, to obtain the distribution (andamby
the mean transmission time as given in [4]), we use transient
solution of diffusion equation and we consider only a single
process. Let us repeat that the process starisg at N and
ends when it successfully comes to the absorbing barrierFat 3. Probabilitypy = me Y=0,0(t)dt that a packet at the momefitis
2 = 0; the positionz of the process corresponds to the currerstll on its way.
distance between the packet and its destination, counted in
hops.

T t

IV. INTRODUCTION OF THE DEADLINE

I1l. M ODEL WITHOUT DEADLINE AND WITHOUT LOSSES : . . :
Denote byT the time after which a packet is considered

In this simplest case we consider diffusion equation (Ipwifost and is retransmitted by the source. Knowing the density
constant coefficients, supplemented with absorbing baatie Yeo.0(t) OFf the travel time fromz, to 0, we can determine the
x = 0. This barrier is expressed by the boundary conditiofgyobabimypT - f;c Yzo.0(t)dt that a packet at the moment
lim, o f(2,t;29) = 0. The process starts at: X(0) = zo 7T js still on its way — see Fig. 3.
and ends when it comes to the barrier. The diffusion processn the model, att = 7" we shift this probability masg
is defined at the intervdl, o). Let us denote the solution of zo and we restart the diffusion process. We may of course

the diffusion equation in this case by, t; zo); it is obtained jnroduce an additional delay before the restart.
using mirror method, see e.g. [2]

1 (sg—z—1516)? 28m0  (2mq—1811)2 V. MODELLING HETEROGENEOUS MEDIUM AND LOSSES
¢(CL‘, t7 xo) — e 2at —e a e 2at . ) ] o
V2Ilat To reflect the fact that the transmission conditions may be

Fig. 1 presents a plot of the function(z,# zo). The different for each hop, the diffusion interval is divideddn
function allows us to determine the first passage time froHfitary intervals corresponding to single hops. The sepint
z = 20 t0 z = 0 and to estimate this way the density of &als are separated by fictive barriers allowing us to balénee
packet transmission time througly hops from a node to the probability density flows between them. We limit the whole

sink: interval to a value corresponding to the size of the network
oo x € [0, D], the starting pointry is somewhere inside this
Vao,0(t) = 1im[fa—¢(.r,t;xo) — Bo(x, t; )] interval. As in generay < 0 (i.e. a packet has a tendency
z—0"2 Ox , of going towards the sink), thr probability of reaching the
o _ (zo—1B[t) B . . . .
= == Zot right barrier by the diffusion process is small. If howevee t
v2lat process reaches the right barrier, it is immediately semieo

Some exemplary curves af,, o(t) are presented in Fig. 2. pointz = D — ¢ and the process is continued.



Within each subinterval we have diffusion process with two

(1) ) ; .
/—\ absorbing barriers, e.qg. fetth interval atr =i —1 andx = ¢
Ly (1) and with two points when the process is started; -atl + ¢
yi (1)

with intensity g;_1..(¢) and ati — e with intensity g, _.(¢).

YL (1) The density of the diffusion process startedcgtwithin an
- AR interval (0, N) having the absorbing barriers at= 0 and
) —— 2 = N has the form, see [2]
yia(t) yi(t) §(z — ), t=0
8ir+elt) gi-cl1) > ' —ro — 2 — B1)2
+ ! + 1 Z {exp Brn (x —xo — ), — ()
O(x,t;m0) = Vallat < ! 2at
I I > o (o—wg
! ! ey [ 2 o]}
i-1 i
wherex!, = 2nN, ¢!/ = —2x¢ — !, .
Fig. 4. Diagram of probability mass circulation due to nonhgateus  The densityf;(x, t; 1)) may be expressed as a superposition
diffusion parameters and due to losses with probabiljityt i-th hop,: = of functionqui(x t: l‘o) at the interval(z' -1 Z)

2,...,D—1.

t
, _ o L film ) = ¢(55>t§1/1i)+/ Gi—1+e(T)p(x,t — 755 — 1+ €)dr
Anintervali, x € [i—1, ] represents the packet transmission 0

when it is ¢ hops distant from the sink. We assume that
parameterss;, «; are proper to this interval and we assume
also the loss probability; within this interval.

Wh h h ¢ th bari fyvhere the function); represents the initial conditions.
en the process approaches one of these barriers, fofpe fqyg L, (t) and ~£(t) for the i-th interval are
example the barriei, it acts as an absorbing one, but the

. . ) btained as
immediately the process reappears at the other side of the

+/ Gi—e(T)p(z,t — T30 — €)dT .

0

barrier with probability (1 — ;) (probability of successful vﬁl(t) —  lim [&M — Bifi(m ti1hy)]
transmission) or with probability; it comes to the node that it v—(i=1) 2 Oz
visited previously, i.e. to the barrier at= i+1 or atz = i—1.

Let v%(t) represent the flow coming to the barrier placed at vE(#) = — lim [%M — Bifi(z, t: )]
x =i from its left side andy/*(t) be the flow coming to this ’ w— (i) 2 Ox

barrier from its right side. The flows start diffusion proses It is much easier to solve the system of all the above
at both sides of the barrier, respectivelf(¢) reappears at equations when they are inverted with the use of Laplace
r =1i—¢cand~F(t) atx = i + ¢ but the intensities of transform: all convolutions become in this case products of
the trespassing flows are reduced by flows correspondingit nsforms, the Laplace transform of the functiof, #; zo)

the loss of packet during the previous hop transmissionsThu

inside the interval the process starts with intensities &(z, 5:00) = exp[ZER0) O {exp [_ |z — xo — x%|A(S)]
o A(s) «
giree) = (1=L)vF® +1nfi®) o
Gio(t) = (=Ll (0) + ok 1) - o [—WA@}} ,

whereg;_1..(t) andg;_.(t) are the probability densities that
A . : . where A(s) = /32 + 2as.
the dlﬁuslon process starts at timet the pointr =i —1+¢ The fir({;)I soluﬁon f.(of t:4) is obtained by numerical
andz =i —¢. . . iRversion of its Laplace transfornf;(z, s;1;). In examples
If we assume that the loss may be repaired by sending toéalow we used Stehfest algorithm [7]
Fig. 6 shows the density(z,t;xo) of the remaining dis-

lost packet from the neighbouring node, the floyi(¢)l; is
=i RO =i+l
sent tar = i—1+e and the flowy,*(¢)]; is sent tor = i+1—c. tance to complete the transfer calculated for time moments

The circulation of probability mass farth interval, repre-

sentinai-th hoo. is presented in Fig. 4 t = 10,20 and 30 if 3 = —0.4 and o« = 0.54. The
gr P. ISP 9. 4 . packet transmission started at the distamge= 10 from its
If the lost packets are retransmitted a certain delay, &er. a destination

a ran_dom time distributed with density functiéfx), [if thjs Figure 7 displays the density,, o(t) of the first passage
time is constant and equaltheni(t) = (¢t —r) ], we rewrite time from z, to = = 0, hence the approximation of the

the above equations as transmission time density. The values of chosen parameters
are:
ic1ae(t) = (L =1)vE@) + Loy () = (¢t
gi-t+<(t) ( )i (R) - 1%11( )+ 1) B=-04, a =054 — (7_1,m,ms1)=/(0.550.30,0.15),
gi—e(t) = (L =lima)yiZa(8) +lni (8) * 1(7) B=-02 a=054 — (71,0, 1)=(0.40,0.40,0,20),

where* denotes the operation of convolution. f=-03, a=081 — (7-1,m,m1) = (0.60,0.10,0.30).
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Fig. 5. Probabilityp(0, ) if the starting point isco = 10, diffusion interval ~Fig. 7. The density function, o(t) of the first passage time from, to

z € [0,20], « = 0.5, and 3 is variable 3 = 0.2,0.4,0.6, 0.8). x = 0, i.e. the approximation of the transmission time density.
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Fig. 8. The impact of loss ratid (I = 0.05,0.1,0.2,0.3) on the density

Fig. 6. The density functiotf(z, t; zo) of the distance to destination at t'mefunction of transfer time at a network with — —0.4 ando = 0.54.

t = 10,20 and 30. The network has parametgrs= —0.4 and o = 0.54
and packet initial position ig¢ = 10.
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