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Abstract— We propose a model based on diffusion approx-
imation to estimate the probability density function of the
distribution of a packet travel time in a multihop wireless
sensor network. In its general form, the model assumes that the
propagation medium and the distribution of relay nodes may be
heterogeneous in space and that the system characteristics may
change over time. It consideres also the retransmission in case
of a packet loss.
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I. I NTRODUCTION

Prediction of a packet travel time in wireless sensor net-
works is still an open issue. The sensor networks, see e.g. [1]
consist of a large number of simple nodes scattered randomly
over a certain area, having ability to route packets to their
neighbours and finally to the sink which collects the data sent
to it via multihop transmission.

The topology of such networks is in most of cases uncertain
and it changes in time (due to nodes movement or failures),
hence special routing algorithms were proposed, e.g. [5], [6]
to face this situation. As it is also hard to introduce global
addressing, the routing decision must be made without the
complete information about the network. We consider the same
network model as in [4] – a packet wireless network in which
nodes are distributed over an area, but where we do not know
about the presence, exact location, or reliability of nodes. The
packets are forwarded to a node witch is most probably nearer
to the destination, but it is also possible that a transmission
may actually move the packet further away from the sink
or send it to a node which is in the same distance to the
destination (see for example [8]). It may also happen that a
packet cannot be forwarded any further, that the intermediate
node has a failure, or that the packet is lost through noise or
some other transient effect. In that case, the packet may be
retransmitted after some time-out period has elapsed, either
by the source or from some intermediate storage location on
the path which it traversed before it was lost.

II. M ODEL FORMULATION

Recently Gelenbe [4] proposed a model based on diffusion
approximation to estimate the mean transmission time from

a source to destination in a random multihop medium. In
this model a value of the diffusion process represents the
distance defined as the number of hops between the transmitted
packet and its destination (sink). Due to complex topology
and transmission constraints, it is not sure that each one-hop
transmission makes this distance shorter and the changes ofthe
distance may be considered as random process. This justifies
the use of diffusion process to characterise it. Diffusion
approximation is a classical method used in queueing theory
to represent a queue length or queueing time e.g. [3], in case
of general independent distributions of interrarival and service
times. Diffusion process is a continuous stochastic process but
it is used to approximate some discrete processes, see [2], like
– as mentioned above – the number of customers in a queue;
here it represents the number of hops remaining to packet to
the destination.

If N(t) denotes the number of hops remaining to destina-
tion at time t, we construct a diffusion processX(t) such
that its density functionf(x, t;x0) approximates probability
distribution p(n, t;n0) of the processN(t), N(0) = n0:
f(n, t;n0) ≈ p(n, t;n0). The density functionf(x, t;x0)

f(x, t;x0)dx = P [x ≤ X(t) < x+ dx | X(0) = x0]

is defined by the diffusion equation

∂f(x, t;x0)

∂t
=
α

2

∂2f(x, t;x0)

∂x2
− β

∂f(x, t;x0)

∂x
, (1)

where the parametersβ and α define respectively the mean
and variance of infinitesimal changes of the diffusion process.
To maintain them similar to the considered processN(t), they
should be chosen as

β = lim
∆t→0

E[N(t+ ∆t) −N(t)]

∆t

α = lim
∆t→0

E[(N(t+ ∆t) −N(t))2] − (E[N(t+ ∆t) −N(t)])2

∆t

In general, the parameters may depend on time and on the
current value of the process,β = β(x, t) and α = α(x, t),
as the propagation medium and distribution of relay nodes
may be heterogeneous in space and the system characteristics
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Fig. 1. Density functionφ(x, t; x0) of the diffusion process with absorbing
barrier,x0 = 20, α = 0.1, β = −0.5.

may change over time. We include this case in the proposed
approach.

Gelenbe in [4] constructs an ergodic process going repet-
itively from starting point to zero and considers its steady-
state properties. Here, to obtain the distribution (and notonly
the mean transmission time as given in [4]), we use transient
solution of diffusion equation and we consider only a single
process. Let us repeat that the process starts atx0 = N and
ends when it successfully comes to the absorbing barrier at
x = 0; the positionx of the process corresponds to the current
distance between the packet and its destination, counted in
hops.

III. M ODEL WITHOUT DEADLINE AND WITHOUT LOSSES

In this simplest case we consider diffusion equation (1) with
constant coefficients, supplemented with absorbing barrier at
x = 0. This barrier is expressed by the boundary condition
limx→0 f(x, t;x0) = 0. The process starts atx0: X(0) = x0

and ends when it comes to the barrier. The diffusion process
is defined at the interval(0,∞). Let us denote the solution of
the diffusion equation in this case byφ(x, t;x0); it is obtained
using mirror method, see e.g. [2]

φ(x, t;x0) =
1√

2Παt

[

e−
(x0−x−|β|t)2

2αt − e
2βx0

α e−
(2x0−|β|t)2

2αt

]

.

Fig. 1 presents a plot of the functionφ(x, t;x0). The
function allows us to determine the first passage time from
x = x0 to x = 0 and to estimate this way the density of a
packet transmission time throughx0 hops from a node to the
sink:

γx0,0(t) = lim
x→0

[
α

2

∂

∂x
φ(x, t;x0) − βφ(x, t;x0)]

=
x0√

2Παt3
e−

(x0−|β|t)2

2αt .

Some exemplary curves ofγx0,0(t) are presented in Fig. 2.
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Fig. 2. Distribution of first passage time fromx0 to 0, γx0,0(t), x0 = 20,
β = −0.5, α = 0.05, 0.1, 0.5, 1.0.

Fig. 3. ProbabilitypT =
∫

∞

T
γx0,0(t)dt that a packet at the momentT is

still on its way.

IV. I NTRODUCTION OF THE DEADLINE

Denote byT the time after which a packet is considered
lost and is retransmitted by the source. Knowing the density
γx0,0(t) of the travel time fromx0 to 0, we can determine the
probability pT =

∫

∞

T
γx0,0(t)dt that a packet at the moment

T is still on its way – see Fig. 3.
In the model, att = T we shift this probability masspT

to x0 and we restart the diffusion process. We may of course
introduce an additional delay before the restart.

V. M ODELLING HETEROGENEOUS MEDIUM AND LOSSES

To reflect the fact that the transmission conditions may be
different for each hop, the diffusion interval is divided into
unitary intervals corresponding to single hops. The subinter-
vals are separated by fictive barriers allowing us to balancethe
probability density flows between them. We limit the whole
interval to a value corresponding to the size of the network
x ∈ [0,D], the starting pointx0 is somewhere inside this
interval. As in generalβ < 0 (i.e. a packet has a tendency
of going towards the sink), thr probability of reaching the
right barrier by the diffusion process is small. If however the
process reaches the right barrier, it is immediately sent tothe
point x = D − ε and the process is continued.



Fig. 4. Diagram of probability mass circulation due to nonhomegonous
diffusion parameters and due to losses with probabilityli at i-th hop, i =
2, . . . , D − 1.

An intervali, x ∈ [i−1, i] represents the packet transmission
when it is i hops distant from the sink. We assume that
parametersβi, αi are proper to this interval and we assume
also the loss probabilityli within this interval.

When the process approaches one of these barriers, for
example the barrieri, it acts as an absorbing one, but then
immediately the process reappears at the other side of the
barrier with probability (1 − li) (probability of successful
transmission) or with probabilityli it comes to the node that it
visited previously, i.e. to the barrier atx = i+1 or atx = i−1.

Let γL
i (t) represent the flow coming to the barrier placed at

x = i from its left side andγR
i (t) be the flow coming to this

barrier from its right side. The flows start diffusion processes
at both sides of the barrier, respectivelyγR

i (t) reappears at
x = i − ε and γL

i (t) at x = i + ε but the intensities of
the trespassing flows are reduced by flows corresponding to
the loss of packet during the previous hop transmission. Thus
inside the intervali the process starts with intensities

gi−1+ε(t) = (1 − li)γ
L
i (t) + li−1γ

R
i−1(t)

gi−ε(t) = (1 − li−1)γ
R
i−1(t) + liγ

L
i (t)

wheregi−1+ε(t) andgi−ε(t) are the probability densities that
the diffusion process starts at timet at the pointx = i−1+ ε

andx = i− ε.
If we assume that the loss may be repaired by sending the

lost packet from the neighbouring node, the flowγL
i (t)li is

sent tox = i−1+ε and the flowγR
i (t)li is sent tox = i+1−ε.

The circulation of probability mass fori-th interval, repre-
sentingi-th hop, is presented in Fig. 4.

If the lost packets are retransmitted a certain delay, e.g. after
a random time distributed with density functionl(t), [if this
time is constant and equalr thenl(t) = δ(t− r) ], we rewrite
the above equations as

gi−1+ε(t) = (1 − li)γ
L
i (t) + li−1γ

R
i−1(t) ∗ l(t)

gi−ε(t) = (1 − li−1)γ
R
i−1(t) + liγ

L
i (t) ∗ l(t)

where∗ denotes the operation of convolution.

Within each subinterval we have diffusion process with two
absorbing barriers, e.g. fori-th interval atx = i−1 andx = i

and with two points when the process is started, ati− 1 + ε

with intensitygi−1+ε(t) and ati− ε with intensitygi−ε(t).
The density of the diffusion process started atx0 within an

interval (0, N) having the absorbing barriers atx = 0 and
x = N has the form, see [2]

φ(x, t;x0) =























δ(x− x0), t = 0

1√
2Παt

∞
∑

n=−∞

{

exp

[

βx′n
α

− (x− x0 − x′n − βt)2

2αt

]

− exp
[

βx′′
n

α
− (x−x0−x′′

n−βt)2

2αt

]}

, t > 0 ,

wherex′n = 2nN , x′′n = −2x0 − x′n .

The densityfi(x, t;ψ) may be expressed as a superposition
of functionsφi(x, t;x0) at the interval(i− 1, i)

fi(x, t;ψi) = φ(x, t;ψi) +

∫ t

0

gi−1+ε(τ)φ(x, t− τ ; i− 1 + ε)dτ

+

∫ t

0

gi−ε(τ)φ(x, t− τ ; i− ε)dτ .

where the functionψi represents the initial conditions.
The flows γL

i−1(t) and γR
i (t) for the i-th interval are

obtained as

γR
i−1(t) = lim

x→(i−1)
[
αi

2

∂fi(x, t;ψi)

∂x
− βifi(x, t;ψi)]

γL
i (t) = − lim

x→(i)
[
αi

2

∂fi(x, t;ψi)

∂x
− βifi(x, t;ψi)].

It is much easier to solve the system of all the above
equations when they are inverted with the use of Laplace
transform: all convolutions become in this case products of
transforms, the Laplace transform of the functionφ(x, t;x0)
is

φ̄(x, s;x0) =
exp[β(x−x0)

α
]

A(s)

∞
∑

n=−∞

{

exp

[

−|x− x0 − x′n|
α

A(s)

]

− exp

[

−|x− x0 − x′′n|
α

A(s)

]

}

,

whereA(s) =
√

β2 + 2αs.
The final solutionfi(x, t;ψi) is obtained by numerical

inversion of its Laplace transform̄fi(x, s;ψi). In examples
below we used Stehfest algorithm [7].

Fig. 6 shows the densityf(x, t;x0) of the remaining dis-
tance to complete the transfer calculated for time moments
t = 10, 20 and 30 if β = −0.4 and α = 0.54. The
packet transmission started at the distancex0 = 10 from its
destination.

Figure 7 displays the densityγx0,0(t) of the first passage
time from x0 to x = 0, hence the approximation of the
transmission time density. The values of chosen parameters
are:

β = −0.4, α = 0.54 −→ (π−1, π0, π+1) = (0.55, 0.30, 0.15),

β = −0.2, α = 0.54 −→ (π−1, π0, π+1) = (0.40, 0.40, 0, 20),

β = −0.3, α = 0.81 −→ (π−1, π0, π+1) = (0.60, 0.10, 0.30).
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Fig. 5. Probabilityp(0, t) if the starting point isx0 = 10, diffusion interval
x ∈ [0, 20], α = 0.5, andβ is variable (β = 0.2, 0.4, 0.6, 0.8).
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Fig. 6. The density functionf(x, t; x0) of the distance to destination at time
t = 10, 20 and 30. The network has parametersβ = −0.4 and α = 0.54
and packet initial position isx0 = 10.

Figure 8 presents the influence of the loss ratel (l =
0.05, 0.1, 0.2, 0.3) on the density of transmission time for
parametersβ = −0.4 et α = 0.54.

VI. CONCLUSIONS

Owing to the introduction of the transient state analysis,
the presented model seems to capture more parameters (time-
dependent and heterogeneous transmission, the presence of
specific to each hop losses) of a sensor network transmission
time than the existing models, also based on diffusion approxi-
mation. It gives also more detailed results: the density function
of a packet travel time instead of its mean value. Numerical
results prove that the model is operational.
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Fig. 7. The density functionγx0,0(t) of the first passage time fromx0 to
x = 0, i.e. the approximation of the transmission time density.

 0

 5e-05

 0.0001

 0.00015

 0.0002

 0.00025

 0  50  100  150  200  250  300  350  400

l = 0.05
l = 0.10
l = 0.20
l = 0.30
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