Fourth Euro-FGI workshop on

Wireless and Mobility

Interference-Aware Channel Assignment in Wireless Mesh Networks

Authors:
Stefano Giordano, Rosario G. Garroppo, Davide Iacono, Luca Tavanti

Department of Information Engineering
University of Pisa

January 16-18 2008, Barcelona, Spain
The principal aim of this work is the definition of a channel allocation algorithm in a *multi-radio Wireless Mesh Network (WMN)*.

- General Features of a *WMN*
- Multi-Channel in *meshed networks*
- Description of the developed algorithm
- Simulation results
- Conclusions
The need of improve the coverage, flexibility and robustness of traditional wireless networks has kicked off the concept of **WMN**.

Wired Infrastructure

- **BSS** = Basic Service Set
- **ESS** = Extended Service Set

Interference-Aware Channel Assignment in Wireless Mesh Network
The need of improve the coverage, flexibility and robustness of traditional wireless networks has kicked off the concept of **WMN**.
The main characteristics of mesh networking based solutions are:

- *Wireless* infrastructure
- *Multi-hop* communication
- Mobility
- Interoperability and Compatibility
- Flexibility and robustness
Disadvantages of a 802.11 based WMN

One serious shortcoming in a 802.11 single-channel WMN is its limited network capacity scalability that asymptotically goes to

\[O\left(\frac{1}{\sqrt{n \log n}}\right) \]

\(n \) is the number of nodes

The reason of this degradation is the fact that the standard plans to use the CSMA/CA access protocol over a single frequency/channel

- Hidden node problem
- Exposed node problem
- Inter-flow interference and intra-flow interference
Intra-flow interference and Inter-flow interference

Intra-flow interference

Flow 1
Intra-flow interference and Inter-flow interference

Flow 1

Flow 2

Inter-flow interference

Internet
One way to reduce interference problems in a multi-hop communication is to allow each node to contemporaneously operate over multiple channels.
One way to reduce interference problems in a multi-hop communication is to allow each node to contemporary operate over multiple channels.
One way to reduce interference problems in a multi-hop communication is to allow each node to contemporarily operate over multiple channels.

It is possible to classify channel allocation algorithms considering their approach:

- Centralized approach
- Distributed approach
- Joint Routing and Channel allocation approach
- MAC modification approach
Proposed Channel Allocation Algorithm

✓ The intended approach employs Graph Theory

✓ The problem of optimal channel assignment has been proven to be NP-hard

\[\text{Greedy heuristics solution}\]

✓ Each node is equipped with several NICs (Network Interface Card)

✓ We formulate the problem of channel assignment as a mesh topology control problem

✓ We apply a centralized approach considering the static nature of Mesh Nodes

✓ We assume that the large amount of traffic within the WMN is directed to or comes from external networks
CONNECTIVITY MODEL:

✓ We model a WMN by means of a bidirectional graph… … Connectivity Graph $G(V,E)$

- Each vertex $v \in V$ represents a Mesh Node
- Each edge $e_{ij} \in E$ represents a link between Mesh Nodes i and j
INTERFERENCE MODEL:

- We model the interference in the WMN by means of a bidirectional graph…

... Weighted Conflict Graph $G_c(L,S)$

- Each vertex $l_{ij} \in L$ represents a link between nodes i and j in $G(V,E)$

- Two nodes $l_{ij}, l_{uv} \in L$ are connected if the links (i,j) and (u,v) in $G(V,E)$ interfere with each other

Interference-Aware Channel Assignment in Wireless Mesh Network
INTERFERENCE MODEL:

✓ We model the interference in the WMN by means of a bidirectional graph...

... *Weighted Conflict Graph* $G_c(L, S)$

The weights assigned to the edges of $G_c(L, S)$ depends on the model utilized:

- *Protocol Model*
- *Physical Model*

![Diagram of Interference-Aware Channel Assignment in Wireless Mesh Network](image-url)
Protocol Model:

- An interference range D_i of radius R'_i is assigned to each node i.

- Link (u,v) interferes with link (i,j) if u or v are within $D_i \cup D_j$.

Physical Model:

- Let S_{ij} be the received power at node j from node i.

- The communication has success if $\text{SNR}_{ij} \geq \text{SNR}_{th}$, where SNR_{ij} is the signal to noise ratio at receiver.

The weights of the edges of $G_c(L,S)$ are binary, the real interference power is not taken into account.

Interference at transmitter is not taken into account.
Proposed interference model:

\[IE(e_{ij}) = \text{all incident links on } i \text{ minus } j \cup \text{all incident links on } j \text{ minus } i \]

- The interfering power of link in \(IE(e_{ij}) \) is obtained as \(S^{iu} = \frac{\chi}{d^n} \)
- We consider a traffic typology through the definition of utilization factor \(\rho_{ij} \) of the interface of node \(i \) on the link with \(j \)

Weights on edge IJ-UV in \(Gc(L,S) \):

\[
W^{IJ/UV} = (1 - \rho_{JJ}) * I_I + (1 - \rho_{IJ}) * I_J
\]

Interference-Aware Channel Assignment in Wireless Mesh Network
Considering our assumption on traffic topology in the WMN, the links near the gateway will be more loaded than the others…

… we assign these links a higher priority for the channel allocation
How our algorithm works:

For each link $l=(i,j)$, we compute the interfering power received considering channel overlapping factor, external interference sources and interference that comes from the other interfaces of nodes of link l.
In order to fit strictly our model with the real scenarios we have added:

- Support of directional antenna
In order to have flexibility we have utilized 12 non overlapped channels.

Network Coloring Process:
- CCA
- CLICA
- Proposed Algorithm

The flows activated are…

In order to have flexibility we have utilized 12 non overlapped channels.
Interference-Aware Channel Assignment in Wireless Mesh Network

In order to have flexibility we have utilized 12 non overlapped channels

Network Coloring Process:

- Algorithms already present in literature
 - CCA
 - CLICA
 - Proposed Algorithm

The flows activated are…

- In order to have flexibility we have utilized 12 non overlapped channels

Simulated Network:
In order to have flexibility we have utilized 12 non overlapped channels. The flows activated are...

In order to have flexibility we have utilized 12 non overlapped channels.

Network Coloring Process:

- **CCA**
- **CLICA**
- **Proposed Algorithm**

Algorithms already present in literature.
Flow $I \rightarrow A$

End-to-end Throughput Vs Time

End-to-end delay Vs Time

Offered Load 2.21 Mbps
Packet size: 512 bytes
Flow $I \rightarrow A$

Lost packets Vs Time

End-to-end Troughput for several offered loads

Offered Load 2.21 Mbps
Flow $I \rightarrow A$

End-to-end delay for several offered loads
Conclusion

The developed algorithm show substantial improvement with respect to CCA and CLICA algorithms in terms of throughput and end-to-end delay

- We significatively reduce intra-flow interference and inter-flow interference among links

- The proposed algorithm produces a network configuration that saturates with a load significatively greater than CCA and CLICA