
Efficient Software Decoder Design
Rajeev Krishna, Todd Austin

Advanced Computer Architecture Laboratory
University of Michigan

{rkrishna, taustin} @ eecs.umich.edu
Abstract:
In this paper, we evaluate several techniques for

generating and optimizing high speed software decod-
ers. We begin by presenting the early stages of a new
instruction set description language named ‘Rosetta’.
We use specifications written in this language to auto-
matically generate a number of different software
decoders. We explore heuristics for generating decoder
trees, particularly with regard to enumerating “don’t
care” bit positions during evaluation in order to reduce
decode tree depth and thus increase performance. We
also investigate the application of cache-conscious data
placement techniques, decoder structure, and the effects
of non-contiguous bit sequences on decoder perfor-
mance. By applying these techniques to decoders pro-
duced for the ARM and IA32 (x86) instruction sets, we
are able to produce highly flexible decoders that are
comparable in size and performance to carefully hand-
coded, hand-optimized decoders with substantially less
programmer time and effort.

Section 1: Introduction
Until fairly recently, efficient decoding of an

instruction set in software has not been of significant
interest beyond the research community, specifically
those researchers involved in simulation and testing of
new hardware architectures. With the introduction of
languages such as Sun’s Java [1] and virtual machine
based hardware infrastructures such as Transmeta’s Cru-
soe processor line [2], the problem of generating effi-
cient software decoders has grown in importance. The
fundamental issue in both of these domains is that of
high speed dynamic binary translation. The overall per-
formance of Java’s virtual machine interface and Cru-
soe’s software translation layer is dependent on the
ability to quickly translate from ‘non-native’ instruction
formats to instructions executable on the host architec-
ture.

One of the major components of any such binary
translation infrastructure is the software decoder. The
ability to quickly identify the non-native instruction is
clearly a factor in overall translation speed. In this paper
we attempt to analyze several approaches to automatic
generation of such high speed decoders. We believe that
the key to decoder performance lies in the ability to
divide groups of instructions by evaluating large
sequences of contiguous bits, minimizing the cost of tra-
versing each stage of the decode tree as well as the aver-
age tree depth. While previous work in this area has
focused on contiguous or non-contiguous sequences of
bits with fixed values for all instructions at a particular
step in the decode process (as opposed to bit positions

representing “don’t care” values in some or all instruc-
tions, termed ‘unbound bits’ from here on), we believe
that dynamically expanding (fully enumerating) don’t
care positions as needed to allow set division on longer
useful contiguous bit sequences may provide a substan-
tial performance benefit by decreasing decoder tree
depth. Such an optimization can only realistically be
performed through automated techniques, as the useful-
ness of unbound (“don’t care”) bit positions would be
rather difficult for a programmer to evaluate.

In order to facilitate automatic decoder generation,
we begin by presenting the early stages of a new ISA
specification language called Rosetta. This language is
inspired by regular expression format, and attempts to
use a similarly concise form to describe instruction syn-
tax. Our intent is to expand the language to capture
semantic information. At this stage, however, Rosetta
provides a very straighforward way to describe instruc-
tion syntax. This specification is translated into a flat-
tened internal representation, providing an abstraction
from the aesthetic qualities of the specification (useful
for human understanding), and allowing decoder gener-
ation to focus on aspects of the specification that are
directly relevant to decoder structure.

We begin our analysis by considering the useful-
ness of allowing unbound bit expansion during genera-
tion of the decoder through a fairly straightforward bit
selection heuristic that requires specification of a maxi-
mum number of unbound bits. We also consider data
placement techniques, reordering decoder state to maxi-
mize memory locality of frequently traversed decode
nodes. Finally, we evaluate decoder structure, testing
data-centered table based decoders against instruction-
centered switch statement decoders. We evaluate the
performance of resulting decoders it terms of raw
decode performance (determined by number of proces-
sor cycles required for an average decode) and cache
performance (through the Cheetah cache simulation
library). From the information gathered in these tests,
we attempt to refine out technique. We re-tool the bit
selection heuristic to better account for the nature of
unbound bits, resulting in better automation and the
elimination of the “maximum unbound bits” constraint.
We also change the focus of the evaluation to the more
efficient switch statement based decoders, and consider
the effect of non-contiguous bit sequences.

We begin this evaluation by considering related
work in Section 2. Section 3 presents a brief overview of
the Rosetta specification language syntax, as well as a
discussion of the internal representation produced from
the specification. The remainder of the paper discusses
bit selection and tree generation techniques. Since the
primary focus of this work is efficient bit selection and

decoder generation, we will present some generic techniques
on tree compaction and decoder generation in Sections 4 and
5. These techniques are common to all of the decoder genera-
tion heuristics evaluated and are thus presented indepen-
dently. Section 6 covers the primary aspects of the work,
decoder performance evaluation. Finally, Section 7 summa-
rizes and provides concluding remarks.

Section 2: Related Work
Several groups have done work in the area of instruction

set specification and decoder / simulator generation. Vengroff
[3] presents a tool called ‘decgen’ that translates a simple
specification format into ISA decoders. The specification
language is very straightforward, but does not appear to pro-
vide sufficient expressivity to easily capture instructions with
numerous syntactic forms or optional and variable length
fields. For example, in order to express the multiple syntactic
forms of a single instruction in the IA32 (x86) ISA, it appears
necessary to explicitly describe each valid syntax as a sepa-
rate instruction description. The decoders produced by dec-
gen are table based, but appear to function by traversing
multiple linked tables, making memory location optimiza-
tions difficult. The decoders also consider only contiguous
sections of globally bound bits, a constrain which we believe
can be relaxed, resulting in a increase in decoder perfor-
mance.

The New Jersey Machine Code Toolkit [4] uses the
SLED [5] specification language to generate assemblers and
disassemblers. SLED provides a class based description for-
mat for specifying field locations and names, with separate
pattern statements specifying constraints on bit positions. We
believe a description format based on regular expressions can
capture both field and pattern information in a more readable
format. The toolkit generates decoders by building a decision
tree based on token sequences provided by the specification
writer. We attempt instead to create an internal abstraction
that is completely independent of the nuances of the specifi-
cation in order to better isolate the syntax information that is
relevant to the decode process.

Architecture Description Language (ADL) is a specifi-
cation language used by the UPFAST simulator generator
[6]. It provides a format not only to describe instruction set
syntax, but instruction semantics and architectural semantics
as well, allowing the automatic creation of complete microar-
chitecture simulators as well as the obvious assemblers and
disassemblers. The syntax specification format used in ADL,
however, seems to fall victim to the same potential problems
as decgen, and it is somewhat unclear how useful ADL
would be in specifying variable length instruction sets or
instruction sets with optional fields.

The SimpleScalar Toolset [7] provides syntax and
semantic descriptions through definitions written as C macro
commands. These macro definitions can be targeted to the
requirements of the individual using the toolset. The defini-
tions are translated directly into simulator code at compile
time by the C preprocessor. Though this abstraction provides
a clean way of describing decoder semantics, it requires that
the entire decode tree be specified manually in the definition
file, placing the entire burden of building the decoder upon
the programmer.

It should be noted that none of the specification tools
described above currently make provisions for decoder struc-
ture optimization based on usage statistics. Though this is
obviously a second order affect, we wish to explore potential
benefits of such optimizations in operation environments
with large working sets. Work in the area of cache conscious
data placement and structure layout [8,9] suggests that mak-
ing such considerations in data placement can improve pro-
gram performance by reducing cache miss rates. Building off
of the basic idea of these works, we attempt to exploit knowl-
edge of the problem domain and usage information acquired
through profiling to arrange decoder state in a cache con-
scious manner.

The Rosetta toolset produces tree based decoders emit-
ted as finite state machines. This allows the toolset to opti-
mize decoders using techniques from both tree processing
and DFA optimization. In particular, as part of their work on
efficient path profiling [10], Ball and Larus present a num-
bering technique using edge increments that produces a
unique numeric value for each unique path through an arbi-
trary tree. This work provided the basis for the annotation
method used in the Rosetta tree compaction algorithm. This
compaction algorithm attempts to minimize the number of
true states used by the DFA through a method related to stan-
dard DFA optimization employed by compilers for regular
expression DFA generation [11]. The standard technique
minimizes states through systematic partitioning of the state
space by distinguishing input sequences. The algorithm used
by the Rosetta toolset achieves the same result by condensing
all identical subtrees of the complete decoder graph, using
the Ball/Larus path numbering technique to help generate
self-similar subtrees.

Section 3: Rosetta Specification Lan-
guage

The Rosetta ISA specification language is intended to
provide a format for completely describing the syntax and
semantics of an instruction set. As a first step toward this
goal, we have developed a concise method for defining valid
instructions in an ISA. This format was originally inspired by
regular expression description format, though the final form
has undergone significant alterations to better accommodate
the domain. Among these modifications is the inclusion of
field names and replacement parameters allowing the
designer to easily label specific subsequences for later use or
to re-use common sub expressions. Consider a simple exam-
ple shown in Figure 3.1 from the ARM7 ISA. This example
serves to demonstrate the basic structure of Rosetta’s expres-
sion format. An instruction group is entered with a ‘definst’
statement. This block contains minimally a ‘match’ section
within which valid instruction formats are described, and
optionally a ‘bind’ section which allows for parameterization
based on fields named in the match section. Within the match
section, a ‘mainseq’ identifier is used to specify the expres-
sion that describes valid instruction. This main sequence may
be preceded by any number of subsequences (denoted ‘sub-
seq’ in later examples) which represent what are effectively
macro definitions that may be referenced in the future. In this
example, both the match and bind sections are fairly straight-
forward. The match section contains a single sequence
description identifying various fields such as registers and

instruction flags. These are described simply as a series of bit
positions, many of which are just unbound don’t care terms
(denoted by the ‘-’). The sequence also specifies certain bit
positions that are bound to specific binary values for all
instances of the instruction. The bind section does not affect
decoding, serving only to parameterize on OP field for later
use in semantic descriptions.

Though this example serves as a good introduction to
the specification format used by Rosetta, it does not really
demonstrate the power of the language as applied to instruc-
tion set specification. To further explore the features pro-
vided by this specification technique we turn to the slightly
more challenging example of describing the data processing
instructions from ARM7. The match section for this defini-
tion is shown in Figure 3.2. Here we see the first use of sub-
sequences to aid in the clarity of the definition. The data
processing instructions in ARM7 have two forms, one to uti-
lize a register value as an operand, and one to specify an
immediate value. The subsequence format allows the intrica-
cies of these forms to be described in isolation, then intro-
duced into the main matching sequence at their appropriate
locations. In this example, the condition field and register
specifiers have also been replaced by macros. These macros,
rather than being defined with the instruction block, were
previously defined in a global section that has the same
semantics as a ‘definst’ block but is used only to hold glo-
bally useful parameters or commands and does not resolve to
any actual instructions. This example clearly demonstrates
how regular expression type matching can be used to con-
cisely capture specific constraints in the set of valid instruc-
tions. Note, for example, the use of the exclusion (‘^’)
operator to create specific constrains in the OPMATCH sub-
sequence, and the square bracket shorthand notation for
repeating a particular sequence (e.g.; ‘[-.5]’ means five don’t
care bits).

The other important feature to note is the ‘>’ symbol
which appears before many of the field names in the exam-
ple. This identifier is used to indicate to the Rosetta toolset
that the marked field does not actually affect the semantics of
the instruction. For example, while the ‘OP’ field is vital to
determining the behavior of an instruction (in this case,
selecting between addition, subtraction, etc.) and must be
enumerated in the evaluation process in order to correctly
identify an instruction, the register specifier ‘Rd’ carries no
such semantic value. Rather, it serves as a parameter to the
instruction and need not be evaluated until an actual execut-
ing instruction is available. This information is used as a hint
by the toolset while flattening the regular expression
sequences representing an instruction (described later).

The distinction between semantically relevant fields and
parameter fields leads us to question what actually consti-
tutes an explicit instruction. In the strictest sense, there is no
reason for the OP field to be given any more weight than the
Rd field during the decode process. One could simply choose
to leave the OP field unexpanded, resulting in a decoder that
is only able to distinguish groups of instructions. The job of
identifying precisely which instruction is represented by a bit
sequence could easily be left to the semantic section, for
example by scanning the OP field at run-time. We believe,
however, that every attempt should be made to push semanti-
cally relevant fields into the decoder. This allows the specifi-
cation to take advantage of decoder optimization techniques
discussed later in this paper, and moves towards isolating
instruction selection semantics from instruction execution
semantics. We believe this will make the resulting specifica-
tions far more concise and far easier to understand.

The opposite end of the argument, expanding all fields
during the decode process, also has far less merit than a bal-
anced approach. The claim that parameter fields (such as the
Rd field) do not carry the same semantic value as non-param-
eter fields comes from the observation that the values of such
fields are used directly and do not affect the control flow of
the instruction. Thus, while there is some benefit in distin-
guishing between an ADD and a SUBTRACT instruction at
the decoder level, there is no benefit from distinguishing
between and ADD to R1 and an ADD to R2. Throughout this
work, we adopt the philosophy that fields representing
semantic information should be expanded, while fields repre-
senting instruction parameters or arguments should not.

As a final example, let us consider specification of the
Intel IA-32 instruction set, specifically the MOD/RM byte,
which presents some rather challenging syntax. The IA-32
specification for Rosetta begins by describing the entire syn-
tax of the MOD/RM, SIB, and displacement bytes as a global
subsequence. Since the architecture allows for a 16 bit and 32
bit operating mode, separate specifications are provided for
each. The specification of the MOD/RM bytes for the 32 bit

definst("Multiply")
{

match {
mainseq = {

Cond(----).000000.A(-).S(-).>Rd(----).>Rn(----).
 >Rs(----).1001.>Rm(----)

};
}

bind {
switch(A) {

case 0: { OP = "mul"; }
case 1: { OP = "mla"; }

}
}

}

Figure 3.1: ARM7 Multiply Instruction
 (Rosetta Specification)
match {
subseq OPMATCH() = { OP(^10--).S(-) | OP(10--).S(1) };
subseq REGMODE() = { { >ShAmt([-.5]).>ShType(--).0
 | >ShReg($REGISTER()).0.>ShType(--).1 }. >Rm($REGISTER())};
subseq IMMMODE() = { >RotAmt([-.4]).>Imm([-.8]) };
mainseq = { $COND_MATCH().00.{ 0.$OPMATCH().>Rn($REGISTER()).>Rd($REGISTER()).$REGMODE()
 | 1.$OPMATCH().>Rn($REGISTER()).>Rd($REGISTER()).$IMMMODE()}
};

Figure 3.2: ARM7 Data Processing Instructions (Rosetta Specification Match Section)

subseq MOD_REGOP_RM32() = { >MOD(00).>REGOP(---).{ >RM(^100 & ^101)
 | >RM(100).>SCALE(--).>IDX(---).{ >BASE(^101)
 | >BASE(101).>DISP([-.32]) }
 | >RM(101).>DISP([-.32]) }

 | >MOD(01).>REGOP(---).{ >RM(^100).>DISP([-.8])
 | >RM(100).>SCALE(--).>IDX(---).>BASE(---).>DISP([-.8]) }

 | >MOD(10).>REGOP(---).{ >RM(^100).>DISP([-.8])
 | >RM(100).>SCALE(--).>IDX(---).>BASE(---).>DISP([-.32]) }

 | >MOD(11).>REGOP(---).>RM(---)
 };

Figure 3.3: 32-bit MOD/RM decoding sub-sequence for IA-32 Instruction Set
operating mode is shown in Figure 3.3. The MOD/RM speci-
fications can then be used to concisely specify rather compli-
cated instruction syntax, as shown in the specification of the
general purpose arithmetic instructions in Figure 3.4. In order
to properly capture information on the current machine state,
our specification assumes that prefixes modifying the current
operand, address, and segment size are parsed out of the
instruction before decode, and a one byte sequence represent-
ing the result of these prefixes applied to the current machine
state is provided as the first ‘byte’ of the instruction. These
are represented by the ‘O’, ‘A’, and ‘S’ values in the specifi-
cation. the ‘PREFILL’ parameter is simply a set of pad bits
filling up the remaining bits in the first byte. The MOD/RM
replacement sequences are used extensively in this specifica-
tion to provide a concise description. The
‘MOD_REGOP_RM’ sequence (in its 16 bit and 32 bit
forms) is utilized in the first section of the specification. The
32 bit version of this sequence was described in Figure 3.3.
The ‘MOD_OPS_RM’ subsequence is identical to the
‘MOD_REGOP_RM’ sequence, except that the reg/op field
of the MOD/RM byte now constitutes an opcode extension.
The ‘MOD_OPS_RM’ sequences thus expand this field,
rather than suppress it with the ‘>’ identifier.

As these examples demonstrate, regular expression syn-
tax provides a powerful way to concisely describe the syntax
of an instruction set. In order to make use of these descrip-
tions, however, the Rosetta toolset must extract valid instruc-
tions and annotate them with appropriate binding (and, in the
future, semantic) information. This is done by the previously

mentioned process of regular expression flattening. In the
first stage of processing, the description of a set of instruc-
tions is completely flattened to enumerate all valid instruc-
tion sequences specified. During the flattening process, field
names and locations are attached to each individual instruc-
tion sequence. It is at this point that the non-semantic field
specifier (the ‘>’ symbol) becomes vital to managing the size
of the resulting set of instructions. Marked fields are
expanded only if they place a constraint on valid instruction
sequences, and may later be compacted to reduce the total
size of the flattened instruction set. The vital point here is
that this identifier is the only hint required by the toolset, and
it’s use is fairly straightforward. Use of parameters and field-
names to group bits together have no effect at all on gener-
ated decoders.

Once the regular expression description of an instruction
block has been completely flattened, binding information is
applied to each instruction in the set, and the resulting con-
struct is added to a running list of all valid instructions (rep-
resented by other instruction blocks). The final list of valid
instruction sequences generated by this process forms the
basis for all further processing on the instruction specifica-
tion. It is important to note that conflicts between instructions
are not completely evaluated at this stage of processing, as
“don’t care” terms are left unexpanded and may create con-
flicts. Any conflicts remaining in the instruction set will,
however, be identified during decoder generation described
in the later sections.
match {
subseq PRIOP() = {00.OPCODE(---)};
mainseq = { $PREFILL().>O(-). { A(0).>S(-)..$PRIOP().0.d(-).w(-).$MOD_REGOP_RM16()

 | A(1).>S(-)..$PRIOP().0.d(-).w(-).$MOD_REGOP_RM32()
 }

 | $PREFILL().>O(-). { >A(-).>S(-)..$PRIOP().10.w(0).$IMM8()
 | A(0).>S(-)..1000.00.sextend(-).w(0).$MOD_OPS_RM16().$IMM8()
 | A(1).>S(-)..1000.00.sextend(-).w(0).$MOD_OPS_RM32().$IMM8()
 }

 | $PREFILL().O(0). { A(-).>S(-)..$PRIOP().10.w(1).$IMM16()
 | A(0).>S(-)..1000.00.sextend(-).w(1).$MOD_OPS_RM16().$IMM16()
 | A(1).>S(-)..1000.00.sextend(-).w(1).$MOD_OPS_RM32().$IMM16()
 }

 | $PREFILL().O(1). { A(-).>S(-)..$PRIOP().10.w(1).$IMM32()
 | A(0).>S(-)..1000.00.sextend(-).w(1).$MOD_OPS_RM16().$IMM32()
 | A(1).>S(-)..1000.00.sextend(-).w(1).$MOD_OPS_RM32().$IMM32()
 }

 };
 }

Figure 3.4: Specification of arithmetic operations for IA-32 instruction set (match section)

Select Bits [a,b]

Select Bits [c,d] Select Bits [c,d] Select Bits [d,e]Select Bits [c,d]

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11I4 I5 I6 I7

Figure 4.1: Initial Decode Tree for Compaction
Section 4: Tree Compaction
The process of generating a decoder from the instruction

set specification begins with the flattened set of semantically
distinct instructions described in the previous section. We
then recursively divide this set of instructions into subsets
based on common bit-slices. The result of this set division is
a tree of bit selection information (e.g., evaluate the numeric
value represented by bits three through six and select the next
node appropriately) which, if followed, terminates in a leaf
node representing the decoded instruction. The structure of
the decoder tree itself is fairly straightforward. As such, the
decoder generation discussion in Section 6 will focus on the
heuristic used to select which bits to evaluate at each stage of
the decode tree. While we believe the application of our heu-
ristics will produce reasonably efficient decoder trees, the
resulting tree may still be quite large due to self-similar
regions in the instruction set (for example, the address mode
decoding for the IA32 instruction set creates large groups of
identical subtrees along paths leading to distinct instruc-
tions). We wish to be able to compact common subtrees in
order to minimize the overall memory size of the decoder
tree, however in order to do so we must convert the leaf
nodes of the tree (the instructions) into a more generalizable
abstraction. Otherwise, subtrees that are identical in all
respects except the final set of instructions could not be com-
bined without introducing potentially complicated book
keeping that would have to be performed at runtime, reduc-
ing the speed of the decoder. Since our tree compaction tech-
nique is common to all heuristics presented, we describe it
briefly before moving on to the actual heuristic evaluation.

The problem of common subtree compaction comes
down to one of path identification. If two distinct subtrees
can be combined into one without loosing the ability to dis-
tinguish between them during the decode process, then the
combination technique can be successful. Intuitively, this
requires some annotation at the incoming edges of the com-
mon subtree to identify which of the logical subtrees is actu-
ally being traversed, differentiating the subtree based on the
path used to reach it. An annotation technique that solves this
precise problem is found in work by Ball and Larus on effi-
cient profiling techniques [10]. In this technique, edges of a
graph are annotated with counter incrementation values. The
sum of these increments for any traversal of the graph pro-
duces a number in the range [0,n] where n is the number of
possible paths. This number uniquely identifies the path
taken through the graph. Since the process of compacting
common subtrees turns the decoder tree into a directed acy-
clic graph, this technique is directly applicable. It turns out,

however, to be too precise for our needs. We are not actually
interested in identifying the specific path taken through the
tree. Rather, we are only concerned with the instruction at the
end of that path. Due to replication caused by the evaluation
of unbound bits during tree generation, these goals are not
necessarily identical. Furthermore, though instructions can
easily be identified by the final path increment value, instruc-
tion replication effectively increases the number of leaf
nodes (and thus number of paths) in the decode tree to a
value greater than the actual number of instructions decoded,
potentially requiring a mapping between the path identifier
and the instruction. For our purposes, we would actually pre-
fer to be able to select explicitly the (potentially non-unique)
numeric value generated by each path, and annotate the tree
such that this value is generated. We therefore make a slight
modification to the approach used by Ball and Larus. Con-
sider the simple decode tree in Figure 4.1. Note that two of
the subtrees are completely identical, and three are identical
except for the instructions. We will demonstrate how our
modified path annotation technique allows all three of these
subtrees to be combined, maintaining necessary distinctions
between trees without introducing unnecessary ones.

The procedure begins at the leaf nodes. The numeric
identifier for each instruction is annotated to the incoming
edge as an increment. The result of this procedure on the
marked subtree from figure 4.1 is shown in Figure 4.2a. The
path increments are then normalized to the smallest incre-
ment, resulting in a base increment for the subtree and a set
of edge increments, as shown in Figure 4.2b. Once this pro-
cedure has been completed for each leaf node, the procedure
is repeated for each of the intermediate nodes, using the
annotated base increment values to the same effect that the
instruction enumerations had in the first iteration. The anno-
tation procedure is completed when the head of the tree has
been reached. By ensuring that some instruction has an enu-
meration of zero, we ensure that the base increment of the
head of the decoder tree is also zero, thus reducing the results
to a set of path incrementation values associated with the
edges of the tree. The completed tree is shown in Figure 4.3.

Figure 4.2a
Select Bits [c,d]

I4 I5 I6 I7

+4 +5 +6 +7

Base Inc: 0
Select Bits [c,d]

I4 I5 I6 I7

+0 +1 +2 +3

Figure 4.2b

Base Inc: 4

Select Bits [a,b]

Select Bits [c,d] Select Bits [c,d] Select Bits [d,e]Select Bits [c,d]

I0 I1 I2 I3 I4 I5 I6 I7 I8 I9 I10 I11I4 I5 I6 I7

+0 +1 +2 +3

+0 +4 +8+4

+0 +1 +2 +3 +0 +1 +2 +3 +0 +1 +2 +3

Figure 4.3: Annotated Decode Tree for Compaction
With the path annotations in place, it is now possible to
compact all identical subtrees resulting in Figure 4.4. It is
clear that all of the relevant information from the original tree
has been preserved in the compacted structure. It is also
important to note with this technique that identical subtrees
need not terminate in the same instructions. Rather, the bur-
den has been shifted to the relative order of instruction enu-
merations. In order to expose the greatest similarity in
subtrees, we begin the annotation procedure by performing a
depth first traversal of the decode tree, assigning leaf enu-
merations in order when possible, and re-mapping instruction
enumerations to this new order. Thus, the relative order of
instructions within a subtree should be identical (in order)
whenever the set of instructions identified by the subtree per-
mits.

Section 5: Decoder Generation
The most direct approach to decoding a set of instruc-

tions is to select a single bit position at each stage that is
fixed in all instructions in the set. This divides the set of
instructions into two subsets which may then be further
divided. Vengroff [3] observes that the availability of a bit
position that is bound in all instructions is not a strict require-
ment for decodability. Rather, so long as all instructions are
pairwise distinguishable, the instruction set is decodable. The
artificial restriction of bound bits in all instruction, however,
does not present a problem in practice.

Though single bit selection is conceptually simple, it has
the potential to generate rather deep decode trees resulting in
slow decoder performance. Ideally, we wish to minimize the
depth of the resulting decode trees while also minimizing the
amount of work that must be performed at each level of the
decode tree. The single bit solutions meets the second crite-
ria, but not the first. The first step to resolving this problem is
to allow selection based on several bits at once. We explore

two related heuristics for selecting bits as part of our evalua-
tion in Section 6.

Either of the bit selection heuristics considered can be
applied to a set of instructions to produce a decode tree. The
generic tree compaction technique discussed in the previous
section can be applied to this decode tree to reduce its overall
state. This results in a second abstract internal representation
(a compacted decode tree). From this representation, we are
able to explore various approaches to generating a final
decoder in C code. Specifically, we emit the decoder state in
the form of a single table (array) of integer values operated
upon by a table walking function, or we emit the state as a
series of nested switch statements, representing the decoder
state directly in code.

The choice of output method affects one other stage of
our evaluation. For either decoder type, we attempt to re-
order physical state based on node usage profiles in order to
minimize working set size. For the table based decoders, this
optimization takes the form or physical re-ordering of nodes
in the decoder array to maximize locality of accesses to the
decoder table. For the switch statement based decoders, this
optimization amounts to re-ordering of case-blocks to maxi-
mize access locality in the instruction stream.

Section 6: Decoder Evaluation
To perform evaluations, decoders generated from

ARM7 and IA32 Rosetta specifications were tested against
decoders from the SimpleScalar toolset [7]. As described pre-
viously, SimpleScalar uses a macro based description lan-
guage in concert with the C pre-processor to describe a
complete tree based decoder in table form at compile-time.
This represents a carefully hand-coded, hand-optimized
decoder structure, providing a very competitive baseline for
comparison. We will consider the average number of cycles
needed to decode instructions, and the cache performance of
each decoder.

The evaluation software consists of a tight loop, issuing
instructions to a single decoder from instruction tracefiles of
common benchmark programs (SPEC 2000). This method
was chosen in order to better isolate decoder performance
from the effects of other unrelated code. This was particu-
larly useful for cache performance evaluations which were
acquired using SimCheetah, the SimpleScalar front end to the
‘cheetah’ cache simulation library [12]. This simulation envi-
ronment was configured to not perform cache flush on con-
text switches, effectively eliminating the effects of tracefile
read calls and allowing nearly complete isolation of the cache
behavior of the decoder under test.

Select Bits [a,b]

Select Bits [c,d] Select Bits [d,e]

I? I? I? I? I8 I9 I10 I11

0 1 2 30 1 2 3

+0 +4 +8+4

Figure 4.4: Compacted Decode Tree

All decoder speed tests were performed on a Pentium-III
system, allowing access to the architecture’s cycle counter
register for reasonably fine-grain raw performance measure-
ments. In order to ensure that cycle count values represented
a valid metric, relative values were compared against relative
wall clock time measurements. While time measurements
were unable to consistently resolve the actual time spent in
the decoder, the cycle count values did correspond reason-
ably with measurements of total execution time, indicating
that the cycle count metric does correlate well with decoder
performance and thus constitutes a valid measurement tool.

6.1 - Usefulness of Unbound Bit Expansion
While the ideal situation would be to isolate a large,

contiguous group of bound bits (recall that these are bit posi-
tions that have fixed values in ALL instructions in a set), it
may not be desirable to introduce extra levels into the decode
tree if a group of bound bits is divided by a small number of
unbound bits. We therefore expand our selection criteria to
allow a limited number of unbound bits to be selected. These
unbound bits are assigned both of their possible values, and
the associated instruction is replicated in the appropriate sub-
sets. This implies that an instruction with N unbound bits for
some particular selection range will be replicated 2^N times
in resulting subsets. This represents, therefore, a potential
trade-off between decoder depth and decoder size. While size
increases due to replication can be mitigated somewhat by
the tree compression algorithm mentioned previously, we
would still expect a greater number of unbound bits to be
associated with more overall state in the final decoder.

To motivate the use of unbound bits in decoder genera-
tion, we begin with a simple heuristic to evaluate the useful-
ness of such bit expansions. We begin developing our bit
selection heuristic with the observation that the depth of
decode tree required by any set of instructions is likely to be
related to the number of instructions in the set and that
decode tree depth relates directly to decoder performance.
Obviously there are many other factors that affect decoder

depth and performance (such as the number of bound bits),
but as a first order approximation this relationship makes
intuitive sense. Thus, for any given set of instructions, we
evaluate all valid bit sequences and select the sequence that
minimizes the size of the largest resulting subset. This
approach intuitively favors bit sequences that spread the
instructions out among the result subsets, minimizing the
expected depth of the decoder at each stage. We evaluate the
usefulness of expanding unbound bits by setting restrictions
on the number of such unbound bit positions that are allowed
in any valid bit sequence. Figure 6.1.1 shows results for the
cycle count metric for a number of benchmark programs
across a range of maximum allowed unbound bits. Relaxing
the unbound bit constraint beyond five bits for ARM and
seven bits for IA32 had no effect on generated decoders, indi-
cating the effectiveness of the bit selection heuristic is elimi-
nating arbitrarily poor decoder structures. The figures show a
clear performance benefit to expansion of unbound bit loca-
tions during decoder tree generation. While the IA32 results
show a steady progression of performance, the ARM results
show a sudden performance increase at 4 unbound bits.
Though the precise reason for this ‘sweet spot’ is as yet unde-
termined, we observe that in both decoders the best perfor-
mance was gained when the unbound bit constraint
approximately matched the size of the primary opcode field
for the instruction set. In the ARM instruction set, the pri-
mary opcode for most instructions, as well as the register
specifier size, is four bits. In the IA32 instruction set, the pri-
mary opcode is generally considered to be 8 bits, however in
most instructions one or two of these bits actually represent
modifiers on instruction semantics, rather than separate
instruction groups.

It is important to note that decoders produced by Rosetta
were able to achieve performance comparable to or better
than decoders from SimpleScalar. This clearly shows that the
Rosetta toolset is able to construct decoders that perform as
well as hand-coded decoders with much less effort on the
part of the programmer. It also demonstrates that unbound bit
Figure 6.1.1: Cycle Count Results

x86 Cycle Count Results

0

100

200

300

400

500

600

700

0U
B

2U
B

4U
B

5U
B

6U
B

7U
B

Sim
ple

Sca
lar

Decoder Type
 (UB = # Unbound Bits)

C
yc

le
 C

ou
nt

s

cc1 xlisp go
perl grep

ARM7 Cycle Count Results

0

50

100

150

200

250

0U
B

2U
B

3U
B

4U
B

5U
B

Sim
ple

Sca
lar

Decoder Type (UB = # Unbound Bits)

C
yc

le
 C

ou
nt

cc1 grep bzip2 anagram

expansion is an effective method for increasing decoder per-
formance.

6.2 - Node Ordering and Cache Performance
We next use the decode trees generated with our bit

selection heuristic to evaluate the usefulness of re-ordering
the memory state of decoders to improve cache performance.
The table based decoder emitted by the toolset allow memory
locations of various decoder nodes to be arbitrarily re-
arranged (though the internal state of an individual node can-
not be similarly re-arranged). We recognize that for ordering
to be useful, nodes must be accessed frequently during pro-
gram execution. A preliminary profiling run indicated, how-
ever, that the actual working set of these decoders was very
small. In fact, the second most frequently accessed node in
the generated ARM decoders (out of over 400 nodes) was
referenced on fewer than 10% of all instructions. The IA32
decoders showed similar access profiles, though the working
set was slightly larger (third most frequently accessed node
referenced on less than 15% of instructions). These working
set profiles indicate that node reordering would actually not
be very useful in this domain, as very few nodes are accessed
to decode most instructions. A brief set of evaluations using
the Cheetah cache simulation library showed that node order-
ing is indeed ineffective at increasing performance. The
small working set demonstrated in the profiling statistics,
however, does serve as further validation that the bit selec-
tion heuristic is quite effective for generating good decoder
trees that resolve instructions at minimal depth.

6.3 - Decoder Type
As a final evaluation of our basic node selection heuris-

tic, we wish to consider the effect of decoder type on perfor-
mance. Specifically, we compare the performance of the
table based decoders discussed above, and switch statement
based decoders commonly constructed by programmers. By
working from the common internal representation provided
by the toolset, it was possible to construct these decoders
from identical decode trees, thus isolating the performance
differences between the two forms.
 It was expected that latency due to indirect branches and
poor cache performance would seriously hamper the perfor-
mance of switch statement based decoders. The result of our
trials, however, show that switch statement based decoders
consistently outperform table based decoders (by approxi-
mately 100 cycles / decode). A more detailed evaluation of
decoder structure provides an explanation for the perfor-
mance gap. Firstly, the profiling information from the previ-
ous section indicates that very few indirect branches are
executed by the decoder before a result is available, mitigat-
ing their effect on performance. We believe, however, that
the major performance win comes from optimizations that
can easily be incorporated into the switch statement format
and cannot be incorporated into a table based format. For
example, all information regarding bit selection (first bit
position, selection mask, etc.) involves a memory access for
table based decoders. In the switch statement format, much
of this information can be incorporated directly into the code
as immediate values, thus pushing most of the work of bit
selection on the instruction fetch unit and eliminating the
data accesses altogether. In a similar fashion, several other

memory accesses and conditional tests were unnecessary in
the switch statement format. Due to the otherwise isomorphic
structures of the evaluated decoders, it is reasonable to con-
clude that these optimizations lead directly to the observed
performance. We must note, however, that despite the better
performance, switch statement based decoders tended to be
20-30% larger than identical table based decoders. Thus, the
performance increase comes at the cost of total memory foot-
print.

6.4 - Bit Selection Heuristic Revisited
Given these results, we would like to evaluate the use of

unbound bits in more detail. Our previous heuristic consid-
ered a bit position unbound if it resolved to a “don’t care”
position in any instruction in the set. This is a fairly coarse
metric, as unbound bits may actually be bound in most of the
instructions in the set. In fact, a more detailed evaluation of
bit selection shows that this is by far the common case near
the head of the decode tree. Instruction sets tend to group
together semantically relevant bits (e.g., opcode fields), lead-
ing to naturally occurring contiguous blocks of mostly bound
bit positions with occasional unbound bits occurring in those
few instructions with odd syntax. Thus, we wish to adopt a
cost function that does not place hard limits on ‘unbound’ bit
positions from a global perspective, but rather considers the
effect of unbound bit positions on replication in the resulting
decoder tree. The results from section 6.1 seem to indicate
that minimizing the largest resulting subset is an effective
way of selecting bit ranges. We thus wish to incorporate this
metric with a better evaluation of unbound bit usage. The
final selection heuristic is effectively a weighted sum of the
largest subset size and the total number of instructions in all
subsets. The first value (largest subset size) is obviously in
the range [1, #instructions]. This value is normalized to the
total number of instructions, resulting in a ‘worst case’ value
of 1.0. The second value is a number in the range [#inst,
N*#inst], where N is the number of subsets. Thus, if no
unbound bits are used, the sum of instructions in all subsets is
equivalent to the number of instructions that must be differ-
entiated. If only completely unbound bits are used (a worst
case scenario) all instructions are replicated in all subsets,
thus the sum is N times the number of instructions. This
value is normalized to the number of instructions times the
number of subsets, resulting once again in a worst case value
of 1.0. Thus, if both portions of the metric are unweighted,
the final cost metric ranges from a minimum dependent on
the number of instructions up to a maximum (worst case)
value of 2.0. By once again evaluating all reasonable groups
of contiguous bits, we acquire a list of potential selection
ranges, each with an associated cost. With this approach, and
selecting the lowest cost bit range, we consider the effect of
unbound bits by measuring the replication they cause, rather
than placing an arbitrary constraint upon them.

This new evaluation also allows us to favor portions of
the cost metric by weighting them, rather than explicitly
selecting one metric over the other. We would expect that
increasing the weight of the largest set size portion of the
metric would tend to lead to larger, faster decoders (as the
system would favor selecting larger bit sequences over
reducing replication). Similarly, we would expect increasing
the weight of the replication metric to lead to smaller (though

potentially slower) decoders. Decoders generated under vari-
ous weight schemes do not, however, bear out this hypothe-
sis. ARM decoders generated to reduce replication did show
a substantial decrease is size, but there was little difference
between decoders favoring the maximum set size and decod-
ers for which both portions of the cost metric were weighted
equally. Decoders for IA32 completely contradicted the
expected pattern, becoming slightly larger as more relative
weight was placed on replication reduction. We believe these
surprising results are due to the effect of our tree compres-
sion algorithm, which depends on similarity between subtree
to reduce state. This algorith affects the relationship between
the bit selection heuristic and final decoder size in fairly non-
trivial ways, making the results difficult to predict.

We compare decoders generated with this new heuristic
against the better performing decoders generated previously.
Results showed that decoders were comparable in both data
size and raw performance. Decoders generated for the ARM
instructions set were ten to fifteen cycles slower and 15-40%
larger than the best performing decoders from the previous
results (depending on cost function weighting). These results
reflect the inherent intricacies in the ARM instruction set,
making it more difficult to perform automatic decoder gener-
ation. By contrast, the IA32 decoder were approximately 4%
smaller (approximately 123k), and performed slightly better
than the previous batch. In both cases, altering the weights on
the cost function had very little impact on decoder perfor-
mance, only on decoder size.

6.5 - Non-contiguous Bit Sequence Selection
The observation that switch statement based decoders

provide better performance than table based decoders and
can be optimized more completely allows us to consider
incorporating non-contiguous bit sequences into the decoder
tree. We hope non-contiguous bit sequence selection can be
used to decrease the overall size of the decoder tree by elimi-
nating extra nodes. We also hope that careful selection of
such sequences can improve decoder performance, as the
effect of non-contiguous sequences is to allow multiple
selections without the overhead of passing to the next level of
the decode tree. Switch statement based decoders are vital for
such an analysis, as the need to accommodate the extra state
information in a table based decoder would make such a con-
sideration prohibitive.

Our evaluation of non-contiguous sequences develops
directly from the new cost function described previously.
Each viable selection range is evaluated and the lowest cost
range is selected (as with contiguous range selection). We
then selectively join other ranges, beginning with the lowest
remaining cost, until a preset cost limit or until the maximum
number of bits allowed in a single step is reached. Thus, we
attempt to mitigate the cost of incorporating non-contiguous
sequences by selecting sequences that best differentiate the
set. By this approach, we are also able to evaluate the effect
of allowing progressively less useful (higher cost) non-con-
tiguous sequences by increasing the cost limit.

Our approach to non-contiguous bit sequences turns out
not to reduce decoder size. Though it reduces the number of
actual decoder states (as expected), the increased size of each
of these states (and potential effect on tree compaction) turn
out to increase decoder size slightly as the number of non-
contiguous sequences increases. While disappointing, this is

not an unreasonable result, as increased non-contiguity is
achieved by utilizing increasingly high-cost bit range selec-
tions. While the ‘expected tree depth’ of these higher cost
ranges is capped by the lower cost ranges that are also
included, the effects of instruction replication are not, thus
the larger decoders.

Varying the maximum allowed cost for non-contiguous
bit sequences had no apparent affect on ARM decoder gener-
ation. Though several low cost sequences were available,
these tended to be subsets of the lowest cost sequence and
were thus subsumed by it. We also know from decoder profil-
ing that the working set size for the ARM decode tree is
extremely small. No relaxation of the maximum cost con-
straint caused non-contiguity at the head of the decode tree,
the level at which over 90% of instruction references resolve.

Variation in the cost constraint does turn out to have an
impact on the generated IA32 decoder. The results of various
cost constraints are shown in Figure 6.5.1. These results con-
sider performance variations under various weights for the
cost metric. We observe that while all three weight schemes
have similar performance for contiguous bit selection (cost =
0.0), they diverge somewhat as increasingly high cost non-
contiguous sequences are allowed. Our initial expectations
were to see an increase in performance for increased non-
contiguity up to a point, after which the performance would
decrease. This ‘knee’ would correspond to the point where
the detrimental effects of incorporating higher cost sequences
outweighs the benefit of covering a greater number of bits at
each stage of the decode process. In the observed results,
only decoders weighted to minimize replication showed the
expected trend. Decoders generated with equal weight suffer
from an initial decrease in performance, but then seem to fall
into the expected pattern, while decoders weighted to focus
on minimizing largest subset size do not appear to follow the
pattern at all. Since decoder performance comes down to a
subtle balance between the cost of non-contiguous bit selec-
tion and the benefit of reducing potential tree depth, it is dif-
ficult to attribute these variations to any specific cause.
Figure 6.5.1: Cycle Count Results for Various

0

50

100

150

200

250

0 0.5 1 1.5 2 2.5 3

Cos t Cons traint

C
yc

le
s/

D
ec

od
e

Weight Replication (x2)
Weight Equal
Weight SetSize (x2)

Non-Contiguous Bit Selection Constraints (IA32 ISA)

Key:
Perf: Decoder performance (average cycles/decode)
WS (I/D): Working set size in (i/d)-cache (bytes)
Miss (I/D): Cache miss ratio for cache just larger (< 16 bytes larger) that WS(I/D)

Table 1: Summary Comparison of SimpleScalar and Rosetta Decoders (IA32 ISA)

Decoder Perf. WS (I) Miss (I) WS (D) Miss (D) Footprint

SimpleScalar 310 5792 0.0148 1424 0.0128 ~70k

Rosetta 170 5792 0.0165 1408 0.0158 ~124k
6.6 - Profiled Reordering Revisited
As a final performance tuning metric, we attempt once

again to profile decoder traversals, this time re-ordering the
case blocks of various switch statements in order of use.
While this does not affect the data cache performance of the
compiler generated switch jump tables, it should increase
locality in the i-cache, making the common case path through
the decoder tree an in-order execution of instructions. We are
motivated by the same profiling data that showed the ineffec-
tiveness of data reordering in phase one. In this domain how-
ever, we would expect reordering to benefit from the small
working set and relative consistency of data flow. Results
show a slight performance improvement (~10 cycles on aver-
age) corresponding to a consistent, but extremely small
decrease in cache misses. Thus, while we do at least see a
consistent effect, we once again do not feel that this repre-
sents an area to focus optimization efforts in this domain.

Section 7: Summary and Conclusions
We present a specification language for describing the

syntax of instruction set architectures, and the beginnings of
a language for describing complete instruction set syntax and
semantics. We use this specification language to produce
decoders for ARM7 (a RISC ISA) and IA32 (a CISC ISA).
We attempt to optimize these decoders through inclusion of
unbound bits during decoder generation, decoder state com-
paction, and decoder state reordering through cache con-
scious data placement techniques. Our first round of
evaluations demonstrated that allowing expansion of bit posi-
tions that are not globally bound during decoder generation
can lead to substantially faster decoders than more restrictive
approaches, and that state compaction can be applied quite
effectively in this domain. Our results also indicate that, due
to very small working set sizes, decoder state re-ordering for
memory placement does not have a noticeable affect on
cache or raw performance metrics. One particularly interest-
ing result indicates that switch statement based decode func-
tions, despite potential delays due to indirect branching, can
often be optimized to run faster than table based decoders.

Based on these results, we perform a more detailed eval-
uation of switch statement based decoders, using a new cost
function to better automate decoder generation and exploit-
ing the hardcoded structure of switch-statement based decod-
ers to evaluate the use of non-contiguous bit sequences. We
find that making allowances for carefully constrained non-
contiguous sequence selection can have a beneficial impact
on decoder performance. Finally, we evaluate re-ordering of
switch statements to improve i-cache performance. We find

that, while case reordering does have an impact on perfor-
mance (unlike data reordering), the effect is insignificant.

Table 1 shows a metric by metric comparison between
the SimpleScalar IA32 decoder (table based, one of our base-
lines) and some average values for a decoder generated from
the Rosetta toolset (specifically, a switch statement decoder
selecting only contiguous bit sequences). This brief summary
clearly demonstrates that we are able to generate decoders
that perform comparably against a carefully hand-coded
decoder. By generating decoders from a straightforward
description language, we are able to reduce the time and
effort required for coding and debugging, allowing us to
quickly explore a wide range of optimizations and trade-offs.

The next step in this research involves expanding the
specification language to include instruction semantics. The
primary challenge here is in describing widely disparate
architectures in a canonical form. We hope eventually to be
able to apply this specification to a range of useful problems
such as compiler or software re-targeting, simulator and test
infrastructure generation, and high speed code translation.

References:
[1] Java Language Specification, http://java.sun.com, 2001.
[2] Crusoe Processor, http://www.transmeta.com/crusoe/, 2001.
[3] D.Vengroff. decgen - A Decoder Generator. http://

www.ece.udel.edu/~vengroff/asl/tools/decgen/decgen.htm,
1996.

[4] N. Ramsey and M.Fernandez. The New Jersey Machine-
Code Toolkit. Usenix Technical Conference. New Orleans,
LA, 1995.

[5] N. Ramsey and M. Fernandez. Specifying Representations
of Machine Instructions. ACM Transactions on Program
ming Languages and Systems. May 1997.

[6] S.Onder and R.Gupta. Automatic Generation of
Microarchitecture Simulators. Proceedings of International
Conference on Computer Languages. 1998.

[7] D.C. Burger and T.M. Austin. The SimpleScalar Tool Set,
V. 2.0. Technical Report 97-1342, Computer Science Depar
ment, Univ. of Wisconsin Madison, 1997.

[8] B.Calder, C.Krintz, S.John and T.Austin. Cache-Conscious
Data Placement. IS-ASPLOS. San Jose, CA. October 1998.

[9] T. Chilimbi, M.Hill, and J.Larus. Cache-Conscious Struc
ture Layout. Proceedings of ACM SIGPLAN. May 1999.

[10]T. Ball and J. Larus. Efficient Path Profiling. Proceedings
of Micro-29. Paris, France. December 1996.

[11]A.Aho, R.Sethi, J.Ullman. Compilers: Principles, Tech
niques, and Tools, Addison-Wesley, 1988.

[12]R.Sugumar and S.Abraham. Efficient Simulation of Caches
under Optimal Replacement with Applications to Miss Char
acterization. Proceeding of ACM SIGMETRICS. May 1993.

Footprint: Total size of all decoder related data (bytes)

