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I. A BSTRACT

It is commonly acknowledged that user devices in the not-
too-distant future will more and more resemble a communi-
cation hub, sporting arrays of GPS navigators, web browsers,
videogame consoles and screens flashing the latest news or
local sightseeing information. In this context, most pieces of
information are likely to be of general use, and therefore a
sensible dissemination and caching policy would be desirable.

In this work, we focus on such an environment: few and
far between access points, or gateway nodes, in a highly-
populated network area where user devices are equipped
with a data cache and communicate through the ad hoc
networking paradigm. User devices create a cooperative en-
vironment where information is exchanged among nodes in
a peer-to-peer fashion. In particular, they form a pure peer-
to-peer system, whose nodes may simultaneously act as both
“clients” and “servers” to the other nodes in the network. Also,
we envision a set of information categories that users may
be interested in, such as web documents or data files, and
associate each information with a desired spatial distribution.
By spatial distribution, we mean the distribution according to
which the information copies should be placed in the network
geographical area. The nodes storing an information copy
will act as providers for this content. Clearly, the information
spatial distribution will depend on the information popularity
as well as on the expected user density on the network area.

Traditional approaches to information caching in commu-
nication networks [1] are based on the solution of linear pro-
gramming problems, which often require global knowledge on
the network condition, or lead to quite complex solutions that
involve significant communication overhead. Unlike previous
approaches, our solution is fully distributed and it comes at a
very low cost in terms of communication overhead. Our goal is
to achieve the desired content distribution by properly letting
the information move across the network.

More specifically, while developing our solution, we iden-
tify a number of issues that need to be addressed.

� Achieving a desired distribution of the information within
an area: regardless of how the information is distributed
at the outset, the system should be able to identify if and
how frequently the information should be replicated and
spread around to neighboring nodes.� Fair distribution of information burden: as mentioned
above, a node storing the information acts as provider
for that information; of course, this role may exact a
high toll from nodal resources in terms of bandwidth
or power consumption; it is therefore advisable that the
role of content provider be handed over to neighboring
nodes quite frequently, without altering the information
distribution.� Information survival: regardless of the initial information
distribution, and of the density of nodes, information
should never be allowed to die out due to node isola-
tion, transmission malfunctions or incorrect distribution.
Related to the information survival is the evaluation of
the minimum number of copies of a specific information
that can satisfy users’ needs (i.e., in terms of information
retrieval time or response rate).

We focus on the first two issues, namely, achieving the
desired distribution while fairly choosing nodes acting as
information providers.

Our solution can single out the following advantages:� it is fully distributed;� it is content-transparent, i.e., it does not require knowl-
edge on the contents stored by the neighboring users, thus
preserving users’ privacy;� it works with minimum overhead.

In this paper, we investigate the applicability of two well-
known mobility models, namely, the random walk and the
random direction model in letting the information flow across
the network. We present some preliminary results detailingthe
performance obtained by a random walk approach.

We highlight that in the context of sensor networks, ap-
proaches based on active queries following a trajectory through
the network or agents propagating information on local events
have been proposed, respectively, in [2] and [3]. However,
both these works focus on the forwarding of these messages



through the network, while our scope is to make the the desired
information available by letting it move through nodes caches
(minimizing cache replication across neighboring nodes).To
the best of our knowledge, this is the first time such an
approach is proposed.

A. The Information Mobility Models

We consider a tagged information and, as a first step, we
take the desired spatial distribution to be uniform. To achieve
the target distribution, we let the information move around
according to the following mobility models.� The random walk mobility model (RWM) is the discrete-

time version of the Brownian Motion [5]. At each time
step, mobile entities driven by the RWM movement pick a
random direction and speed, and move accordingly until
the following time step. It is typically employed, in a
number of flavors, in graph theory, when dealing with
graph visits. In our case, the graph under study matches
the network physical topology. We consider the simplest
random walk possible, in which each mobile entity, i.e.
information copy, roams the network by moving from
one node to a randomly selected neighbor. Each node
caches the information for an exponentially distributed
amount of time before handing it to the next hop in
the information copy visit pattern. This approach requires
trivial node operations and introduces minimal overhead,
thus representing a lower-bound benchmark for more
advanced information mobility models.� The random direction mobility model (RD) [4] is often
used to simulate the movement of user nodes in ad
hoc networks. According to this model, each mobile
entity alternates periods of movement (move phase) to
periods during which it pauses (pause phase). Move
and pause phases are often assumed to be exponentially
distributed. At the beginning of each move phase, an
entity independently selects its new direction and speed
of movement; speed and direction are kept constant for
the whole duration of the entity move phase. In [4], it
has been shown that, if at timet = 0 the position and
the orientation of the mobile entities are independent
and uniform over a finite area, they remain uniformly
distributed for all time instantst > 0, provided the
entities move independently of each other.
In our context, a mobile entity is a copy of the tagged
information which “travels” from a user node to another
according to the random direction model. The pause
phase corresponds to the time period during which the
entity is stored at a user node, while the move phase
starts at the time instant when the current information
provider hands over the content to one of its neighbors
and drops it from its cache. As the current provider hands
the information over, it will include in the transmitted
message either the location of the final destination or the
selected direction and travel time. In the first case, the
user nodes have to be able to estimate their position (i.e.,

through GPS), which however is a fair assumption in most
practical scenarios.
Clearly, the information moves across user nodes, thus
it may be transmitted along a direction that just ap-
proximates the selected one, or it may be stored at a
node that is nearby (but not exactly at) the selected
geographical destination. We therefore need to investigate
the actual spatial distribution of the information that is
obtained through our approach, how far from the uniform
distribution is and how the proposed mechanism can be
implemented in a simple but effective manner. Further-
more, we will study the impact of the parameters of the
mobility model on the information spatial distribution.

B. Performance Evaluation Methodology

Since the goal of our study is to understand to which extent
the information distribution achieved by a mobility model
resembles the desired content diffusion, we need to define
an ad-hoc metric. To this end, we leverage the distribution
of information copies inter-distance. As a matter of fact, we
can compare the measured inter-distance distribution against
the theoretical distribution of the distance between two points,
whose position is a random variable following the objective
spatial distribution over the area within which the nodes are
deployed.

The comparison metric we employ is the Kullback-Leibler
(KL) divergence, defined asDKL(P jjQ) = Z 1�1 P (x)logP (x)Q(x)dx;
whereP (x) is the measured copies inter-distance distribution,
andQ(x) is the desired distribution.

Since in our analysis we consider a square area where the
nodes are deployed and we seek a uniform dissemination of
content, the target distribution is the solution to the bidimen-
sional case of the hypercube line picking problem [6], which
is known to be:Q(x) = 8>><>>: 12x4 � 83x3 + �x2

if 0 � x < 1;�� � 2� 4 tan�1  + 83�x2 � 12x4 + 43 + 13
if 1 � x < p2;

with  = px2 � 1.

C. Preliminary results for the random walk case

We consider a static network of 2000 nodes over a square
area of 500 m side. Nodes are located over the simulated area
according to an instance of random distribution, as shown in
Fig. 1. Each node has a transmission range of 20m, resulting
into 9 neighbors for each node on average. The number of
information copies concurrently moving through the network
sums to 20, and the caching time at each node is exponentially
distributed around a mean of 10 s.

Fig. 2 shows the target cumulative distribution function
(CDF) of the distance between information copies, correspond-
ing to a uniform distribution of contents, versus realizations
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(a) 10 s time granularity
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(b) 50 s time granularity
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(c) 500 s time granularity
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(d) 5000 s time granularity

Fig. 2. CDF of the information copies inter-distance for different observation interval granularities
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Fig. 1. Simulated nodes distribution

of the observed equivalent CDF. In particular, each plot
corresponds to a different observation interval: e.g., in the case
of 10 s time granularity, each CDF is obtained from a 10 s
observation, which is the mean caching time. These results
show how uniform the distribution of the content appears at
a given instant. On the other hand, the case of 5000 s time
granularity shows CDFs as measured over 5000 s, i.e., circa
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Fig. 3. Time evolution of KL divergence, for different observation interval
granularities and 20 copies

500 information movements. The other plots represent inter-
mediate cases. We can notice that the obtained CDF closely
approximates the target CDF and, as the observation interval
granularity increases, the approximation becomes more and
more accurate. This also gives us an idea of the amount of
time we have to wait in order to achieve a distribution which
can be considered uniform on average.

In Fig. 3, the evolution of the Kullback-Leibler divergence
between the measured and objective CDF is plotted over



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2  1.3  1.4

C
D

F

Normalized cached information distance

maximum negative KL divergence
maximum positive KL divergence

CDF objective

Fig. 4. Measured CDFs corresponding to maximum negative andmaximum
positive KL divergences with respect to the target CDF
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Fig. 5. KL divergence mean (�) and standard deviation (�) with 10 s
observation intervals, for a different number of copies in the system.

time, as the granularity of the observation interval varies. We
can see that the distance is obviously more subject to high
oscillations when the observation intervals are short. Also, the
mean (�) and standard deviation (�), reported in the legend of
Fig. 3, decrease with increasing observation time granularity,
thus confirming that longer observations lead to more uniform
content distribution, on average.

In order to provide a visual representation of the magnitude
of the KL divergence reached by the system, in Fig. 4 we
compare the target CDF against the CDFs corresponding to
the maximum negative and maximum positive values of KL
divergence obtained over time. The results refer to the case
where the observation time is set to 10 s.

Finally, Fig. 5 shows an interesting effect that takes place
when increasing the number of copies. We observe that, as the
number of information replicas cached in the network grows,
the KL divergence becomes more stable, but the average
skewfrom the desired distribution increases as well. The reason
for this behavior lies in the location of nodes, which is static
and presents different node density over the simulated area.
The effect of an uneven density becomes more remarkable
as the number of information copies increases, since the
distribution of copies tends to resemble more closely that of
nodes.

II. CONCLUSIONS ANDFUTURE WORK

In this work we addressed the problem of achieving a
desired distribution of information in a cooperative environ-
ment, using a low-overhead, content-transparent, distributed
approach. Preliminary results have shown that the random
walk approach is viable as long as the desired distribution
is uniform. In the prosecution of this work, we are currently
investigating the impact of random walk parameters on system
performance, as well as the random direction approach.
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